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ABSTRACT

Traditional parallel processing models, such as BSP, are
“scale up” based, aiming to achieve high performance by
increasing computing power, interconnection network band-
width, and memory/storage capacity within dedicated sys-
tems, while big data analytics tasks aiming for high through-
put demand that large distributed systems “scale out” by
continuously adding computing and storage resources through
networks. Each one of the “scale up” model and “scale out”
model has a different set of performance requirements and
system bottlenecks. In this paper, we develop a general
model that abstracts critical computation and communica-
tion behavior and computation-communication interactions
for big data analytics in a scalable and fault-tolerant man-
ner. Our model is called DOT, represented by three matri-
ces for data sets (D), concurrent data processing operations
(O), and data transformations (T), respectively. With the
DOT model, any big data analytics job execution in vari-
ous software frameworks can be represented by a specific or
non-specific number of elementary/composite DOT blocks,
each of which performs operations on the data sets, stores
intermediate results, makes necessary data transfers, and
performs data transformations in the end. The DOT model
achieves the goals of scalability and fault-tolerance by en-
forcing a data-dependency-free relationship among concur-
rent tasks. Under the DOT model, we provide a set of op-
timization guidelines, which are framework and implemen-
tation independent, and applicable to a wide variety of big
data analytics jobs. Finally, we demonstrate the effective-
ness of the DOT model through several case studies.
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1. INTRODUCTION
The data explosion has been accelerated by the prevalence

of Internet, e-commerce and digital communication. With
the rapid growth of “big data”, the need for quickly and
efficiently manipulating the datasets in a scalable and reli-
able way is unprecedentedly high. Big data analytics has
become critical for industries and organizations to extract
useful information from huge and chaotic data sets to sup-
port their core operations in many business and scientific ap-
plications. Meanwhile, the computing speed of commodity
computers and the capacity of storage systems continue to
improve while their unit prices continue to decrease. Nowa-
days, it is a common practice to deploy a large scale cluster
with commodity computers as nodes for big data analytics.

In response to the high demand of big data analytics,
several software frameworks on large and distributed clus-
ter systems have been proposed and implemented. Repre-
sentative systems include Google MapReduce [11], Hadoop
[1], Dryad [17] and Pregel [22]. These system frameworks
and implementations share two common goals: (1) for dis-
tributed applications, to provide a scalable and fault-tolerant
system infrastructure and supporting environment; and (2)
for software developers and application practitioners, to pro-
vide an easy-to-use programming model that hides the tech-
nical details of parallelization and fault-tolerance. Although
the above mentioned systems have been operational to pro-
vide several major Internet services and prior studies have
been conducted to improve the performance of software frame-
works of big data analytics, e.g. [15] and [20], the following
three issues to be addressed demand more basic and funda-
mental research efforts.

Behavior Abstraction: The “scale out” model of big
data analytics mainly concerns two issues:

1. how to maintain the scalability, namely to ensure a
proportional increase of data processing throughput
as the size of the data and the number of computing
nodes increase; and

2. how to provide a strong fault-tolerance mechanism in
underlying distributed systems, namely to be able to
quickly recover processing activities as some service
nodes crash.

Currently, several software frameworks are either claimed
or experimentally demonstrated that they are scalable and



fault-tolerant by case studies. However, the basis and prin-
ciples that jobs can be executed with scalability and fault-
tolerance is not well studied. To address this issue, it is
desirable to use a general model to accurately abstract the
job execution behavior, because it is the most critical fac-
tor for scalability and fault-tolerance. The job execution
behavior is reflected by the computation and communica-
tion behavior and computation-communication interactions
(called processing paradigm in the rest of the paper) when
the job is running on a large scale cluster.

Application Optimization: Current practice on appli-
cation optimization for big data analytics jobs is underlying
software framework dependent, so that optimization oppor-
tunities are only applicable to a specific software framework
or a specific system implementation. Several projects have
focused on this type of optimizations, e.g. [12]. A bridging
model between applications and underlying software frame-
works would enable us to gain opportunities of software
framework and implementation independent optimization,
which can enhance performance and productivity without
impairing scalability and fault tolerance. With this bridg-
ing model, system designers and application practitioners
can focus on a set of general optimization rules regardless
of the structures of software frameworks and underlying in-
frastructures.

System Comparison, Simulation and Migration:
The diverse requirements of various big data analytics appli-
cations cause the needs of system comparison and applica-
tion migration among existing and/or new designed software
frameworks. However, without a general abstract model
for the processing paradigm of various software frameworks
for big data analytics, it is hard to fairly compare differ-
ent frameworks in several critical aspects, including scalabil-
ity, fault-tolerance and framework functionality. Addition-
ally, a general model can provide guide to building software
framework simulators that are greatly desirable when de-
signing new frameworks or customizing existing frameworks
for certain big data analytics applications. Moreover, since a
bridging model between applications and various underlying
software frameworks is not available, application migration
from one software framework to another depends strongly
on programmers’ special knowledge of both frameworks and
is hard to do in an efficient way. Thus, it is desirable to have
guidance for designing automatic tools used for application
migration from one software framework to another.

All of above three issues demand a general model that
bridges applications and various underlying software frame-
works for big data analytics. In this paper, we propose a
candidate for the general model, called DOT, which charac-
terizes the basic behavior of big data analytics and identifies
its critical issues.The DOT model also serves as a powerful
tool for analyzing, optimizing and deploying software for big
data analytics. Three symbols “D”, “O”, and “T” are three
matrix representations for distributed data sets, concurrent
data processing operations, and data transformations, re-
spectively. Specifically, in the DOT model, the dataflow
of a big data analytics job is represented by a DOT expres-
sion containing multiple root building blocks, called elemen-
tary DOT blocks, or their extensions, called composite DOT
blocks. For every elementary DOT block, a matrix repre-
sentation is used to abstract basic behavior of computing
and communications for a big data analytics job. The DOT
model eliminates the data dependency among concurrent
tasks executed by concurrent data processing units (called
“workers” in the rest of the paper), which is a critical re-

quirement for the purpose of achieving scalability and fault-
tolerance of a large distributed system.

We highlight our contributions in this paper as follows.
• We develop a general purpose model for analyzing, op-
timizing and deploying software for big data analytics
in distributed systems in a scalable and fault-tolerant
manner. In a concise and organized way, the model
is represented by matrices that characterize basic op-
erations and communication patterns along with in-
teractions between computing and data transmissions
during job execution.

• We show that the processing paradigm abstracted by
the DOT model is scalable and fault-tolerant for big
data analytics applications. Using MapReduce and
Dryad as two representative software frameworks, we
analyze their scalability and fault-tolerance by the DOT
model. The DOT model also provides basic princi-
ples for designing scalable and fault-tolerant software
frameworks for big data analytics.

• Under the DOT model, we provide a set of optimiza-
tion guidelines, which are framework and implementa-
tion independent, and effective for a large scope of data
processing applications. Also, we show the effective-
ness of these optimization rules for complex analytical
queries.

The rest part of this paper is organized as follows. Our
model and its properties are introduced in Section 2. Section
3 shows that the processing paradigm of the DOT model is
scalable and fault-tolerant. In Section 4, we identify opti-
mization opportunities provided by the DOTmodel. Section
5 demonstrates the effectiveness of the DOT model by sev-
eral case studies. Section 6 introduces related work, and
Section 7 concludes the paper.

2. THE DOT MODEL
The DOT model consists of three major components to

describe a big data analytics job: (1) a root building block,
called an elementary DOT block, (2) an extended building
block, called a composite DOT block, that is organized by
a group of independent elementary DOT blocks and (3) a
method that is used for building the dataflow of a big data
analytics job with elementary/composite DOT blocks.

2.1 An Elementary DOT Block
An elementary DOT block is the root building block in

the DOT model. It is defined as interactions of the follow-
ing three entities that are supported by both hardware and
software.

1. A big data (multi-)set that is distributed among stor-
age nodes in a distributed system;

2. A set of workers, i.e. concurrent data processing units,
each of which can be a computing node to process and
store data; and

3. Mechanisms that regulate the processing paradigm of
workers to interact the big data (multi-)set in two
steps. First, the big data (multi-)set is processed by
a number of workers concurrently. Each worker pro-
cesses a part of the data and stores the output as the
intermediate result. Moreover, there is no dependency
among workers involved in this step. Second, all inter-
mediate results are collected by a worker. After that,
this single worker performs the last-stage data trans-
formations based on intermediate results and stores
the output as the final result.
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Figure 1: The illustration of the elementary DOT block

An elementary DOT block is illustrated by Figure 1 with a
three-layer structure. The bottom layer (D-layer) represents
the big data (multi-)set. A big data (multi-)set is divided
into n parts (from D1 to Dn) in a distributed system, where
each part is a sub-dataset (called a chunk in the rest of the
paper). In the middle layer (O-layer), n workers directly
process the data (multi-)set and oi is the data-processing
operator associated with the ith worker. Each worker only
processes a chunk (as shown by the arrow from Di to oi)
and stores intermediate results. At the top layer (T-layer),
a single worker with operator t collects all intermediate re-
sults (as shown by the arrows from oi to t, i = 1, . . . , n), then
performs the last-stage data transformations based on inter-
mediate results, and finally outputs the ending result. What
must be noticed is that as shown in Figure 1, the basic rule
of an elementary DOT block is that n workers in the first
step are prohibited from communicating with each other and
the only communication in the block is intermediate results
collection shown by the arrows from oi to t, i = 1, . . . , n.

A simple example using one elementary DOT block is to
calculate the sum of a large collection of integers. In this
example, this large collection of integers is partitioned to n

chunks. These n partitions are stored on n workers. Firstly,
each worker of the n workers storing integers calculates the
local sum of integers it has and stores the local sum as an
intermediate result. Thus, all of operators o1 to on are sum-
mation.Then, a single worker will collect all of intermediate
results from n workers. Finally, this single worker will cal-
culate the sum of all intermediate results and generate the
final result. Thus, operator t is summation.

2.2 A Composite DOT Block
In an elementary DOT block, there is only one worker

performing last-stage transformations to update results on
intermediate results. It is natural to use multiple workers
to collect intermediate results and perform last-stage data
transformation, because either intermediate results tend to
be huge, or the cardinality of the set of categories of inter-
mediate results is greater than one.Thus, a group of inde-
pendent elementary DOT blocks is needed, which we define
as a composite DOT block, the extension of the elemen-
tary DOT block. A composite DOT block is organized by a
group of independent elementary DOT blocks, which have
the identical worker set of the O-layer and share the same
big data (multi-)set as input divided in an identical way.
Suppose that a composite DOT block is organized by m el-
ementary DOT blocks, each of which has n workers in the
O-layer. This composite DOT block will combine these ele-
mentary DOT blocks (trees) and then form a forest structure
shown in Figure 2. Each worker in the O-layer will have m

operators, and operator oi,j means that this operator orig-
inally belongs to the worker i of the jth elementary DOT
block. The T-layer of this composite DOT block will have
m workers and operator tj means that it is the operator for
last-stage transformations of the jth elementary DOT block.
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Figure 2: The illustration of the composite DOT block

Based on the definitions of the composite DOT block,
there are three restrictions on communications among work-
ers:

1. workers in the O-layer cannot communicate with each
other;

2. workers in the T-layer cannot communicate with each
other; and

3. intermediate data transfers from workers in the O-layer
to their corresponding workers in the T-layer are the
only communications occurring in a composite DOT
block.

An example using one composite DOT block is a job used
to calculate the sum of even numbers and odd numbers from
a large collection of integers. Similar to the example shown
in Section 2.1, this large collection of integers is partitioned
to n chunks. Two elementary DOT blocks can be used to
finish this job, one elementary DOT block for calculating the
sum of even numbers and another for calculating the sum of
odd numbers. In the elementary DOT block for calculating
the sum of even/odd numbers, each worker in the O-layer
will first filter out odd/even numbers and calculate the local
sum of even/odd numbers as the intermediate result; then, a
single worker will collect all intermediate results and calcu-
late the sum of even/odd numbers. A composite DOT block
is organized by these two elementary DOT blocks. In the
T-layer of this composite DOT block, there are 2 workers.
Operator t1 can generate the sum of even numbers, while t2
can generate the sum of odd numbers.

In a composite DOT block, the execution of its m ele-
mentary DOT blocks is flexible. For any two elementary
DOT blocks of those m elementary DOT blocks, these two
elementary DOT blocks can be executed concurrently or se-
quentially, depending on specific system implementations.

2.3 Big Data Analytics Jobs
In the DOT model, a big data analytics job is described

by its dataflow, global information and halting conditions.
Dataflow of a Job: The dataflow of a big data analyt-

ics job is represented by a specific or non-specific number of
elementary/composite DOT blocks. For the dataflow of a
big data analytics job, any two elementary/composite DOT
blocks are either dependent or independent. For two ele-
mentary/composite DOT blocks, if the result generated by
a DOT block is directly or indirectly consumed by another
DOT block, i.e. one DOT block must be finished before an-
other, they are dependent, otherwise they are independent.
Independent elementary/composite DOT blocks can be ex-
ecuted concurrently.

Global Information: Workers in an elementary/composite
DOT block may need to access some lightweight global in-
formation, e.g. system configurations. In the DOT model,
the global information is available in a common place, such
as the coordinator or the global master of the distributed
systems. Every worker in an elementary/composite DOT
block can access the global information at any time.
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Halting Conditions: The halting conditions determine
when or under what conditions a job will stop. If a job is
represented by a specific number of elementary/composite
DOT blocks, the job simply stops after finishing the given
number of blocks. In this case, no specific halting condition
is needed. For a job represented by a recurrence relation [2],
one or multiple conditions must be given, so the application
can determine if this job should stop. For example, con-
vergence conditions and a maximum number of iterations
are two commonly used halting conditions in iterative algo-
rithms, such as PageRank [24] and the k-means algorithm
[3].

Figure 3 shows an dataflow example described in the DOT
model with five DOT blocks. In this example, DOT blocks
1, 2 and 3 process the input data first. Then, DOT block
4 will consume the results generated by DOT blocks 1 and
2. Finally, DOT block 5 will take results of DOT blocks 3
and 4 as its input and generate the final result. The global
information can be accessed or updated by all of these five
DOT blocks. Because this job will stop after the DOT block
5 stops, there is no halting condition needed.

Figure 4 shows an iterative job described in the DOT
model with a non-specific number of DOT blocks. In this
example, operators in the O-layer and T-layer of the DOT
block in each iteration are the same. After every iteration,
halting conditions will be evaluated. If all of the halting con-
ditions are true, this job will stop. Similar to the previous
example, the global information can be accessed or updated
by the DOT block in this iterative job.

2.4 Formal Definitions
In the DOT model, the elementary/composite DOT block

can be formally defined using a matrix representation. The
dataflow of a big data analytic job involving a specific or
non-specific number of DOT blocks is represented by an ex-
pression, called a DOT expression, which is defined by an
algebra.

2.4.1 The Elementary DOT Block

In the DOT model, the elementary DOT block is formally
defined in a matrix representation involving three matrices.
The big data (multi-)set is represented by a data vector ~D =
[

D1 · · · Dn
]

, where Di is a chunk. Symbol oi denotes the
operator of worker i in the O-layer (middle-layer of Figure
1) for processing Di. Operators o1 to on will form matrix O

to represent n concurrent operations on n chunks.
The T-layer (top-layer of Figure 1) is represented by an-

other matrix called T , which has one element representing
operator t of the single worker for the last-stage transfor-
mations based on intermediate results. Note that t is an
n-ary function with n inputs. The output of an elementary
DOT block is still a data (multi-)set and the dimension of
the data vector representing the output is 1× 1. The matrix
representation of the elementary DOT block is formulated
as:

~DOT =
[

D1 · · · Dn
]













o1
o2
...
on













[

t
]

=

[ n
⊔

i=1
(oi(Di))

]

[

t
]

=
[

t(o1(D1), · · · , on(Dn))
]

.

In the above matrix representation, matrix multiplication
follows the row-column pair rule of the conventional matrix
product. The multiplication of corresponding elements of
the two matrices is defined as: (1) a multiplication between
a data chunk Di and an operator f (f can either be the op-
erator in matrix O or the one in matrix T ) means to apply
the operator on the chunk, represented by f(Di); (2) mul-
tiplication between two operators (e.g. f1 × f2) means to
form a composition of operators (e.g., f = f2(f1)). In con-
trast to the original matrix summation, in the DOT model,
the summation operator

∑

is replaced by a group operator
⊔

. The operation
n
⊔

i=1
(fi(Di)) = (f1(D1), · · · , fn(Dn)) means

to compose a collection of data sets f1(D1) to fn(Dn). It is
not required that all elements of the collection locate in a
single place.

2.4.2 The Composite DOT Block

Given m elementary DOT blocks ~DO1T1 to ~DOmTm, a
composite DOT block ~DOT is formulated as:

m
⊎

j=1
( ~DOjTj) = ~DO1T1 ⊎ . . . ⊎ ~DOmTm = ~DOcompositeTcomposite

=
[

D1 · · · Dn
]













o1,1 o1,2 · · · o1,m
o2,1 o2,2 · · · o2,m
...

...
. . .

...
on,1 on,2 · · · on,m

























t1 0 · · · 0

0 t2 · · · 0
...

...
. . .

...
0 0 · · · tm













=

[ n
⊔

i=1
(oi,1(Di)) · · ·

n
⊔

i=1
(oi,m(Di))

]













t1 0 · · · 0

0 t2 · · · 0
...

...
. . .

...
0 0 · · · tm













=
[

t1(o1,1(D1), · · · , on,1(Dn)) · · · tm(o1,m(D1), · · · , on,m(Dn)))
]

,

where the operator
⊎

means to construct a composite DOT
block from m elementary DOT blocks by: (1) using one
data vector that includes all chunks used by the m elemen-
tary DOT blocks and each chunk occurs exactly once; (2)
putting matrix Oi (column vector) in the ith column of the
matrix Ocomposite; and (3) putting the single element of ma-



trix Ti in the place (i, i) of matrix Tcomposite. The output
of a composite DOT block is still a data (multi-)set and
the dimension of the data vector representing the output is
1 × m. Details about operator

⊎

are given in section 2.4.3.
Moreover, operator “0” will produce an empty set, i.e. given
a chunk D, 0(D) = ∅ and D

⊔

∅ = D.

2.4.3 An Algebra for Representing the Dataflow of
Big Data Analytics Jobs

With the definition of elementary and composite DOT
blocks, the dataflow of a big data analytics job can be sys-
tematically represented by a combination of multiple ele-
mentary and/or composite DOT blocks. We introduce an al-
gebra among elementary and composite DOT blocks. With
this algebra, a big data analytics job can be represented
by an expression, called a DOT expression. For example,
a job can be composed by three composite DOT blocks,
~D1O1T1, ~D2O2T2 and ~D3O3T3, where the results of ~D1O1T1
and ~D2O2T2 are input of ~D3O3T3. With the algebra defined
in this section, the DOT expression of this job is

( ~D1O1T1 ⊕ ~D2O2T2)O3T3,

where ~D3 = ( ~D1O1T1
⊕ ~D2O2T2).

In the DOT model, an elementary/composite DOT block
can be viewed as a data vector. In the algebra for DOT
expressions, operands are data vectors, elementary DOT
blocks and composite DOT blocks. The algebra defines two
basic interactions between two DOT blocks, as shown by
the above simple example, the interaction between two in-
dependent DOT blocks and that between two dependent
DOT blocks. If two DOT blocks do not have data depen-
dency, they are independent DOT blocks; otherwise, they
are dependent DOT blocks. There are two operations to
define the interaction among independent DOT blocks for
DOT expressions:

•
⊕

: For two data vectors ~D1 =
[

D1,1 D1,2 · · · D1,n
]

and ~D2 =
[

D2,1 D2,2 · · · D2,m
]

,

~D1 ⊕ ~D2 =
[

~D1
~D2

]

=
[

D1,1 D1,2 · · · D1,n D2,1 D2,2 · · · D2,m
]

.

The operator
⊕

simply collects all chunks and forms
a new data vector of a higher dimension. For two ele-
mentary/composite DOT blocks DOT blocks ~D1O1T1
and ~D2O2T2,

~D1O1T1 ⊕ ~D2O2T2 =
[

~D1
~D2

]

[

O1 0

0 O2

] [

T1 0

0 T2

]

.

For a data vector ~D1 and an elementary/composite
DOT block ~D2O2T2,

~D1 ⊕ ~D2O2T2 =
[

~D1
~D2

]

[

I 0

0 O2

] [

I 0

0 T2

]

,

of which I is an identity matrix. Here, an identity
matrix is a matrix with the operator“1”(s) on the main
diagonal and the operator“0”(s) elsewhere. For a given
chunk Di, operator “1” is defined as 1(Di) = Di. Thus,
for a given 1 × n data vector ~D and a n × n identity
matrix I, ~DI = ~D.

•
⊎

: For two data vectors ~D1 =
[

D1,1 D1,2 · · · D1,n
]

and ~D2 =
[

D2,1 D2,2 · · · D2,m
]

,

~D1 ⊎ ~D2

=
[

D1,1 D1,2 · · · D1,n D2,q1 D2,q2 · · · D2,qk

]

,

where k ≤ m, 1 ≤ q1 < q2 < . . . < qk − 1 < qk ≤ m

and for each i (1 ≤ i ≤ k), D2,qi /∈
⋃

1≤i≤n
D1i. Like

the operator
⊕

, operator
⊎

also combines multiple
data vectors into a single data vector of higher di-
mension, and to combine multiple independent ele-
mentary/composite DOT blocks into one composite
DOT block. However, after the operation of

⊎

, each
common chunk used by multiple independent elemen-
tary/composite DOT blocks occurs exactly once. For
matrices O and T in the new composite DOT block, op-
erators will simply be assigned to match the new data
vector. We use two examples to explain

⊎

operators.
Consider that the data vectors in these two examples
are ~D1 =

[

D1 D2
]

and ~D2 =
[

D1 D3
]

. For two data

vectors ~D1 and ~D2, ~D1
⊎ ~D2 =

[

D1 D2 D3
]

. Con-

sider two elementary/composite DOT blocks, ~D1O1T1
and ~D2O2T2, of which

O1 =

[

o1,1,1 o1,1,2
o1,2,1 o1,2,2

]

T1 =

[

t1,1 0

0 t2,2

]

O2 =

[

o2,1,1 o2,1,2
o2,2,1 o2,2,2

]

T2 =

[

t2,1 0

0 t2,2

]

.

The result of ~D1O1T1
⊎ ~D2O2T2 is:

~D1O1T1 ⊎ ~D2O2T2

=
[

D1 D2 D3
]





o1,1,1 o1,1,2 o2,1,1 o2,1,2
o1,2,1 o1,2,1 0 0

0 0 o2,2,1 o2,2,2













t1,1 0 0 0

0 t1,2 0 0

0 0 t2,1 0

0 0 0 t2,2









.

For two dependent DOT blocks, these two DOT blocks
will be chained together according to the data dependency,
e.g. (DO1T1)O2T2. Two dependent DOT blocks can be merged
into one DOT block in a certain condition, described by the
property of conditional associativity.

Property 2.1. conditional associativity: If matrix O

in a composite DOT block is a diagonal matrix, this compos-
ite DOT block can be merged into matrix T of its preceding
composite DOT block or into matrix O of its succeeding com-
posite DOT block.

For example, there are two dependent DOT blocks, described
by

(DO1T1)O2T2 = (
[

D1 D2
]

[

o1,1,1 o1,1,2
o1,2,1 o1,2,2

] [

t1,1 0

0 t2,2

]

)

[

o2,1,1 0

0 o2,2,2

] [

t2,1 0

0 t2,2

]

.

Based on the property of conditional associativity, these two
DOT blocks can be merged into one DOT block, which is

[

D1 D2
]

[

o1,1,1 o1,1,2
o1,2,1 o1,2,2

] [

t2,1(o2,1,1(t1,1)) 0

0 t2,2(o2,2,2(t2,2))

]

.

With the above algebra, the dataflow of a big data ana-
lytics job can be described by a DOT expression composed
by data vector, elementary/composite DOT block, operator
⊕

and/or operator
⊎

. A context-free grammar to derive a
DOT expression is shown in Figure 5.



〈DOTexpression〉→〈dataVector〉
〈dataVector〉→〈D〉|(〈D〉)|〈dataVector〉〈O〉〈T〉|

(〈dataVector〉〈O〉〈T〉)|
〈D〉⊕〈dataVector〉|(〈D〉⊕〈dataVector〉)|
〈D〉⊎〈dataVector〉|(〈D〉⊎〈dataVector〉)|
〈D〉〈O〉〈T〉⊕〈dataVector〉|(〈D〉〈O〉〈T〉⊕〈dataVector〉)|
〈D〉〈O〉〈T〉⊎〈dataVector〉|(〈D〉〈O〉〈T〉⊎〈dataVector〉)
〈D〉→a data vector ~D

〈O〉→a O matrix
〈T〉→a T matrix

Figure 5: The context-free grammar of the DOT expression

If the dataflow of a job needs a non-specific number of
elementary/composite DOT blocks, such as an iterative al-
gorithm for a PageRank evaluation [24], the dataflow should
be described by a recurrence relation. The general format
of a DOT expression representing a recurrence relation is:

~D(t) =
j
⊕

k=i

~D(k)O(k+1)T (k+1), 0 ≤ i ≤ j < t. For example, a

recurrence relation ~D(t) = ~D(t− 1)O(t)T (t) means at time t,
the result is generated by ~D(t− 1)O(t)T (t), of which ~D(t− 1)

is the output at time t− 1.
With the algebra used for representing the dataflow of a

big data analytics job as a DOT expression, the job can
be described by a DOT expression, global information and
halting conditions.

2.5 Restrictions
To make the DOT model effective in practice, we add

several restrictions.
The power of workers: In big data analytics, it is rea-

sonable to assume there is no single worker that can store
the entire data (multi-)set. Thus, similar to [18], we restrict
that the storage capacity of a single worker is sublinear to
the size of data. We do not set any restriction on the com-
putation power of a single worker, which mainly determines
the elapsed time of an operator on a single worker.

The number of workers: In big data analytics, it is
reasonable to assume the total number of workers in matrix
O or matrix T is much smaller than the size of the data. For
matrices O and T in a DOT block, we assume that the total
number of workers is sublinear to the size of data.

3. SCALABILITY AND FAULT-TOLERANCE
Scalability and fault-tolerance are two critical issues in big

data analytics. In this section, we show that the processing
paradigm of the DOT model is scalable and fault-tolerant.

3.1 Scalability
There are five concepts needed to be defined at first.

Definition 3.1. A minimum chunk is defined as a
chunk that cannot be further divided into two chunks. A
minimum chunk represents a operator-specific collection of
data that has to be processed by a single operator at a single
place during a continuous time interval.

Definition 3.2. A basic concurrent data process-
ing unit is defined as a worker which only processes a min-
imum chunk.

Definition 3.3. A processing step is defined as a set
of data operations being executed on a fixed number of con-
current workers during a continuous time interval.

Definition 3.4. Scalability of a job: The scalability
of a job is defined by two aspects:

1. with a fixed input data size N0, the throughput of this
job linearly increases as the number of workers involved
in each processing step of this job linearly increases
at ratio γ (an integer). This linear increase of the
throughput stops when there exists a processing step,
where each worker is reduced to a basic concurrent data
processing unit; and

2. with an initial input data size N0, as the input data size
increases linearly at ratio ω and thus the input data
size is ωN0, the elapsed time of this job can be kept
constant by increasing the number of workers involved
in this job at ratio γ.

Definition 3.5. Scalability of a processing paradigm:
Given a job class A that all job of this class satisfy two condi-
tions: (1) the time complexity of operations on every worker
is Θ(n), where n is the size of the input data; and (2) the
input data of a processing step can be equally divided into
multiple data sub-sets. Also, suppose that the point-to-point
throughput of the network transfer between two workers will
not drop when adding more workers.

A processing paradigm is scalable if any job of the class A

represented by this processing paradigm is scalable.

With the above five definitions, we will show that the
processing paradigm of the DOT model is scalable.

Lemma 3.1. The processing paradigm of the DOT model
is scalable.

Proof. Firstly, we prove that any job of the class A rep-
resented by a single DOT block is scalable. Consider a job
represented by a single DOT block, which is

~DOT =
[

D1 · · · Dn
]









o1,1 · · · o1,m
...

. . .
...

on,1 · · · on,m

















t1 · · · 0

...
. . .

...
0 · · · tm









,

where n and m are the initial number of workers in matrices
O and T , respectively. Based on the definition of a processing
step, there are two processing steps represented by matrices
O and T , respectively. The throughput of this DOT block

is represented as Throughput = ωN0

Telapsed
. The Telapsed is the

elapsed time of this DOT block and

Telapsed = ωtO,n + ωtT,m + f(ωN0, n,m),

of which tO,n is the elapsed time of matrix O with n workers
(the longest elapsed time of operation execution among all
workers in matrix O), tT,m is the elapsed time of matrix T

with m workers (the longest elapsed time of operation exe-
cution among all workers in matrix T ), and f(ωN0, n,m) is
the elapsed time of network transfer from workers in matrix
O to workers in matrix T with the input data size ωN0, n

workers in O and m workers in T .
If the input data size is fixed as N0, ω will be constant

value 1. The linear increase of workers by a factor of γ

means that matrix O will have γn workers and T will have
γm workers. This increase of worker can be done as follows:
for every 3-tuple (Di, oi,j , tj ), where Di ∈ ~D, oi,j ∈ O and
tj ∈ T

• Di in ~D will be replaced by Di
1, · · · ,D

i
γ ;



• oi,j in matrix O will be replaced by

o
i,j
1,1 · · · o

i,j
1,γ

...
. . .

...

o
i,j
γ,1 · · · o

i,j
γ,γ

;

• tj in matrix T will be replaced by

t
j
1 · · · 0

...
. . .

...

0 · · · t
j
γ

.

Here, for a given γ, Di will be equally divided intoDi
1, · · · , D

i
γ .

For example, for a composite DOT block

~DOT =
[

D1 D2
]

[

o1,1 o1,2
o2,1 o2,2

] [

t1 0

0 t2

]

,

with 2 workers in matrix O, 2 workers in matrix T , and a
worker-increase factor γ of 2, the new DOT block ~D′O′T ′

representing 4 workers in O and 4 workers in T will be

~D′O′T ′ =
[

D1
1 D1

2 D2
1 D2

2

]













o
1,1
1,1 o

1,1
1,2 o

1,2
1,1 o

1,2
1,2

o
1,1
2,1 o

1,1
2,2 o

1,2
2,1 o

1,2
2,2

o
2,1
1,1 o

2,1
1,2 o

2,2
1,1 o

2,2
1,2

o
2,1
2,1 o

2,1
2,2 o

2,2
2,1 o

2,2
2,2





















t11 0 0 0

0 t12 0 0

0 0 t21 0

0 0 0 t22









.

With this method, the elapsed time of matrix O, T and

network transfer will decrease linearly, i.e. tO,γn =
tO,n

γ ,

tT,γn =
tT,n

γ and f(N0, γn, γm) =
f(N0,n,m)

γ . Thus, the

elapsed time of this DOT block will be

Telapsed =
tO,n

γ
+

tT,m

γ
+ f(N0, γn, γm) =

1

γ
C,

of which C is constant value to γ. So, the throughput of this
DOT block is

Throughput =
N0

C
γ,

where N0 and C are constant values to γ. When every worker
in either O or T only processes the minimum chunk defined
by the application, i.e. every worker is reduced to a basic
concurrent data processing unit, the number of workers of
this DOT block cannot be further added to gain linear in-
crease of the throughput. Thus, with a fixed input data
size, the throughput of the DOT block linearly increases
as the number of workers linearly increases until there is a
processing step, each worker of which is reduced to a basic
concurrent data processing unit.

If the the data size increases linearly, the number of work-
ers in two matrices can be scaled with the same method
provided above and the elapsed time of network transfer
will be proportional to the ratio ω to γ, i.e. f(ωN0, γn, γm) =
ω
γ f(N0, n,m). So the elapsed time of the DOT block is

Telapsed = ω
tO,n

γ
+ ω

tT,m

γ
+ f(ωN0, γn, γm) =

ω

γ
C,

of which C is a constant value to ω and γ. Thus, if ω
γ is

a constant, the Telapsed will be a constant value and then

the job elapsed time can be kept constant by increasing the
number of workers linearly.

For a big data analytics job of the class A expressed by a
DOT expression, a matrix O or T will represent a processing
step. The conclusion that a job of class A represented by a
DOT expression is scalable is a corollary of the fact that a
job of class A represented by a DOT block is scalable.

Thus, the processing paradigm of the DOT model is scal-
able.

3.2 Fault-Tolerance
Here are four basic concepts to be used in the rest of this

sub-section.

Definition 3.6. Initial input data is defined as the
available data to be accessed in an archived storage at the
start of a set of concurrent operations.

Definition 3.7. Runtime data is defined as the data
generated during the runtime of a set of concurrent opera-
tions.

Definition 3.8. Fault-tolerance of a job: Assuming
the initial input data of every operator is always available,
a big data analytics job is fault-tolerant if it can finish and
generate a correct result when worker failures happen. The
result of a job involving worker failures is correct if and only
if the result is identical to one of the possible results gener-
ated by this job without worker failures.

Definition 3.9. Fault-tolerance of a processing paradigm:
A processing paradigm is fault-tolerant if any job represented
by this processing paradigm is fault-tolerant.

With the above four definitions, we will show that the
processing paradigm of the DOT model is fault-tolerant.

Lemma 3.2. The processing paradigm of the DOT model
is fault-tolerant.

Proof. Consider a job represented by a DOT block with
n workers in matrix O and m workers in matrix T , and con-
sider that there are k1 (1 ≤ k1 ≤ n) failed workers in O and
k2 (1 ≤ k2 ≤ m) failed workers in T during the job exe-
cution. Because the DOT model enforces that there is no
data dependency among peer workers in matrix O and those
in matrix T , which is reflected by the interactions between
matrices O and T , new workers to substitute the services
of failed workers will only be started to re-execute opera-
tors running on the failed k1 workers in O and k2 workers in
T . Since the initial input data of every operator is always
available, there is no difference on functionalities between
a substitute worker and an original worker. Thus, a DOT
block is fault-tolerant.

For a big data analytics job expressed by a DOT expres-
sion composed by a specific or non-specific DOT blocks,
because any DOT block of this DOT expression is fault-
tolerant, the job expressed by this DOT expression is fault-
tolerant.

Since any job represented by the processing paradigm of
the DOT model is fault-tolerant, the processing paradigm
of the DOT model is fault-tolerant.

4. OPTIMIZATION RULES
We identify three types of framework and implementa-

tion independent optimization rules under the DOT model.



These three types of rules can be applied on various frame-
works to optimize the performance of big data analytics jobs.
To be concise and without loss of generality, we use two com-
posite DOT blocks as examples to explain these three types
of optimization rules in this section. These two composite
DOT blocks are defined as follows:

blocki = ~DiOiTi =
[

Di,1 Di,2
]

[

oi,1,1 oi,1,2
oi,2,1 oi,2,2

] [

ti,1 0

0 ti,2

]

,

i = 1, 2.

4.1 Preliminary Definitions
Here are four definitions to be used in the rest of this

section.

Definition 4.1. Equivalence between two data vec-

tors: Two data vectors ~D1 =
[

D11 · · · D1n
]

and ~D2 =
[

D21 · · · D2m
]

are equivalent, denoted as ~D1 ≡ ~D2, if
and only if

⋃

1≤i≤n

D1i =
⋃

1≤i≤m

D2i.

Definition 4.2. Equivalence between two DOT blocks:
Two elementary/composite DOT blocks ~Do1 = ~D1O1T1 and
~Do2 = ~D2O2T2 are equivalent, denoted as ~D1O1T1 ≡ ~D2O2T2,

if and only if ~D1 and ~D2 are equivalent, and ~Do1 and ~Do2

are equivalent.

Definition 4.3. Equivalence between two DOT ex-
pressions: Two DOT expressions EXP1 and EXP2, are
equivalent, denoted as EXP1 ≡ EXP2, if and only if

⊕
1≤i≤n

~D1inputi ≡ ⊕
1≤i≤m

~D2inputi and

⊕
1≤i≤n

~D1outputi ≡ ⊕
1≤i≤m

~D2outputi ,

of which (1) ~D1inputi (i = 1, . . . , n) and ~D2inputi (i = 1, . . . ,m)
are the original input of EXP1 and EXP2, respectively, and
(2) ~D1outputi (i = 1, . . . , n) and ~D2outputi (i = 1, . . . ,m) are
the final output of EXP1 and EXP2, respectively.

Definition 4.4. Associative-decomposable operators:
As defined in [28], an operator H is associative-decomposable
if it can be decomposed into two operators F and C so that:

1. ∀D1, D2,H(D1 ⊕D2) = C(F (D1) ⊕ F (D2));
2. F and C are commutative, i.e. ∀D1,D2, F (D1 ⊕D2) =

F (D2 ⊕D1), C(D1 ⊕D2) = C(D2 ⊕D1);and
3. C is associative, i.e. ∀D1,D2,D3, C(C(D1⊕D2)⊕D3) =

C(D1 ⊕ C(D2 ⊕D3)).

4.2 Substituting Expensive Remote Data Trans-
fers with Low-Cost Local Computing

In the DOT model, there is no restriction on the amount
of data transfers in the communication phase, because the
amount of data transfers is application dependent. Some ap-
plications may need to transfer a large amount of data, while
others may only need to transfer a small amount. However,
considering the fact that “Computing is free” and “Network
traffic is expensive” [14], application designers should mini-
mize the amount of remote data transfers in practice.

In an elementary/composite DOT block, an associative-
decomposable operator in matrix T can transfer partial op-
erations to matrix O. Associative-decomposable operators
which originally belong to the same elementary DOT block,
i.e. these operators locate in the same column of the ma-
trix O, can transfer common-partial operations to matrix T .
With the definition of equivalence between two DOT blocks,

an elementary/composite DOT block can be transformed to
an equivalent one. For example, if in block1, operator t1,1 is
associative-decomposable and can be decomposed into two
operators F and C, the equivalent composite DOT block of
block1 will be:

block1 ≡ block′1 =
[

D1,1 D1,2
]

[

F (o1,1,1) o1,1,2
F (o1,2,1) o1,2,2

] [

C 0

0 t1,2

]

.

Moreover, if the amount of intermediate results generated by
F (o1,1,1) and F (o1,2,1) is less than that generated by o1,1,1
and o1,2,1, the total amount of data transfered will decrease.
Thus, the expensive remote data transfers are replaced by
an additional low cost local computations F . For example,
considering an application that counts the number of occur-
rences of each word in a large number of documents or web
pages. A simple way to implement this application is to let
operators in matrix O emit a pair (word, 1) for every word.
Then, we use a hash partitioning function to decide which
worker in matrix T a pair will be sent to. Finally, workers
in matrix T calculate the number of occurrences for each
word. There is a aggregation operator F that will accumu-
late the value for pairs with the same key, i.e. generate a pair
(word, local count) for each word. If this operator F is ap-
plied locally to all operators in matrix O, each worker in the
new matrix O only emits pairs with accumulated number of
occurrences for each word. By introducing the operator F ,
the total amount of intermediate results transferred through
networks will be significantly reduced and thus the execution
time of this job will decrease. In the MapReduce framework,
this operator F can be implemented by the Combiner Func-
tion [11].

4.3 Exploiting Sharing Opportunities among
Composite DOT Blocks

Exploiting sharing opportunities has been studied by the
database community in different contexts, e.g. [21], [8] and
[9].Based on the DOT model, we identify three types of shar-
ing opportunities among two independent composite DOT
blocks, block1 and block2, and introduce how to exploit these
three types of sharing opportunities. In this sub-section, we
consider that the dataflow of a job is block3 = block1⊎ block2.

Sharing Common Chunks: If block1 and block2 share
a common chunk, e.g. suppose D1,1 = D2,1, the result of
block1 ⊎ block2 will be:

block3 = block1 ⊎ block2

=
[

D1,1 D1,2 D2,2
]





o1,1,1 o1,1,2 o2,1,1 o2,1,2
o1,2,1 o1,2,2 0 0

0 0 o2,2,1 o2,2,2













t1,1 0 0 0

0 t1,2 0 0

0 0 t2,1 0

0 0 0 t2,2









.

Because the decision of how to execute operators in a worker
is flexible, when operators in a worker share a single scan
of the chunk, sharing common chunks will reduce the local
disk I/O.

Sharing Common Operations in Matrix O: After
sharing the common chunks, if two operators in different
columns of matrix O have common operations, these two
columns can be merged. Suppose that o1,1,1 and o2,1,1 are
common operations, so a new operator o′ can represent both
operators of o1,1,1 and o2,1,1. Thus, block3 will be trans-
formed to a new composite block block′3, which is equivalent



to block3. The DOT block block′3 will be

block′3 =
[

D1,1 D1,2 D2,2
]





o′ o1,1,2 o2,1,2
o1,2,1 o1,2,2 0

o2,2,1 0 o2,2,2









(t1,1, t2,1) 0

0 t1,2 0

0 0 t2,2



 ,

of which operator (t1,1, t2,1) means to generate two outputs,
one for operator t1,1 and another for operator t2,1. The
benefit of sharing common operators in matrix O is to re-
duce redundant processing operations, which will decrease
elapsed time.

Sharing Common Operations in Matrix T : After
sharing common operations in matrix O, an equivalent com-
posite DOT block block′3 is created. If in the DOT block
block′3, t1,1 and t2,1 have common operations, a new opera-
tor t′ can represent both operators t1,1 and t2,1. Thus, in
block′3, operator t′ will replace operator (t1,1, t2,1).

4.4 Exploiting the Potential of Parallelism
In this sub-section, we consider that block1 and block2 are

dependent and suppose that block1 is the input of block2, i.e.
~D2 = ~D1O1T1. If O2 is a diagonal matrix, i.e. o2,1,2 = 0

and o2,2,1 = 0, the intermediate results of block2 do not need
to be redistributed in the network. According to Property
2.1 in Section 2.4.3, O2T2 can be merged into matrix T1 of
block1. Thus, the new block1 is:

block′1 = ~D1O1T
′
1 =

[

D1,1 D1,2
]

[

o1,1,1 o1,1,2
o1,2,1 o1,2,2

]

[

t2,1(o2,1,1(t1,1)) 0

0 t2,2(o2,2,2(t1,2))

]

.

With this optimization, for a job composed by ~D1O1T
′
1,

once intermediate results generated by ~D1O1 are collected
by workers in T ′

1, each workers will process its data in paral-
lel till the end of this job. This optimization will eliminate
the time spent on launching the block2, and storing and col-
lecting intermediates results generated by workers in matrix
O2. Thus, the elapsed time of block′1 = ~D1O1T

′
1 is less than

that of running block1 and block2 one by one.

5. EFFECTIVENESS OF THE DOT MODEL
In this section, we demonstrate the effectiveness of the

DOT model with four types of case studies: (1) Certi-

fication: certifying the scalability and fault-tolerance of
processing paradigms of software frameworks; (2) Evalu-
ation and Comparison: evaluating and comparing soft-
ware frameworks; (3) Optimization: optimizing job per-
formance on various software frameworks; and (4) Simu-
lation: providing a simulation-based framework for cost-
effective software design.

5.1 Certification
The DOT model can be used to certify the scalability

and fault-tolerance of the processing paradigm of a software
framework for big data analytics.

Lemma 5.1. For a software framework F for big data an-
alytics, if any job of F can be represented in the DOT model
by either a single DOT block or a DOT expression, the pro-
cessing paradigm of this framework F is scalable and fault-
tolerant.

Proof. For a given software framework F for big data
analytics, if any job of it can be represented in the DOT
model, the processing paradigm is regulated by the process-
ing paradigm of the DOT model. Based on the Lemma 3.1
and Lemma 3.2, the processing paradigm of this software
framework F is scalable and fault-tolerant.

With Lemma 5.1, we can study the scalability and fault-
tolerance of the processing paradigms of different big data
analytics frameworks. In this sub-section, we use two widely-
used software frameworks, MapReduce [11] and Dryad [17],
as case studies.

5.1.1 MapReduce

A MapReduce job has three user-defined functions, map
function, partitioning function and reduce function. The
worker running themap/reduce function is calledmap worker/
reduce worker. Every map function processes each input
key/value pair provided from an underlying distributed file
system and produces a set of intermediate key/value pairs.
The partitioning function will decide which reduce worker
an intermediate key/value pair will be sent to. Then, the
MapReduce framework will shuffle intermediate results through
the network and merge all intermediate key/value pairs based
on the key. Finally, for every intermediate key and its values,
the reduce function will generate the final results.

A computation model of the MapReduce framework is
proposed by [18], in which a big data analytics job is com-
posed of a sequence of MapReduce jobs. This model re-
quires that the map function is stateless and the key/value
pairs generated by a reduce function will have the same key
with the intermediate key fed to this reduce function. In
this paper, we take this model to represent the MapReduce.
However, considering its practical usage, we slightly extend
the power of map workers and reduce workers. Map workers
can have stateful map functions, but a map worker only re-
members key/value pairs it has processed. Moreover, based
on the intermediate key and its values, a reduce function of
a reduce worker can generate a sequence of new key/value
pairs, of which new keys differ from the intermediate key.

To certify that the processing paradigm of the MapReduce
framework is scalable and fault-tolerant, using Lemma 5.1
as a basis, we need to show that any MapReduce job can be
represented by the DOT model.

Lemma 5.2. Any MapReduce job can be represented by a
single DOT block.

Proof. A MapReduce job can be represented by an ele-
mentary or composite DOT block as follows:

~DOT =
[

D1 · · · Dn
]









p1(omap) · · · pm(omap)
...

. . .
...

p1(omap) · · · pm(omap)

















treduce · · · 0
...

. . .
...

0 · · · treduce









,

where matrix O represents the map phase, T represents
the reduce phase and the multiplication between ~DO and
matrix T represents the shuffle phase. The data vector
~D =

[

D1 D2 · · · Dn
]

represents the partitioned input
data. Operator omap means to apply the map function on
each record of the input data. Operator pi represents apply-
ing a partitioning function on each intermediate key/value



pair generated by omap and then extracting all intermedi-
ates key/value pairs which will be sent to the ith reduce
worker represented by row i in the matrix T . Finally, opera-
tor treduce will first merge intermediate key/value pairs into
groups based on the key and then apply the reduce function
on each group. Thus, a MapReduce job can be represented
by an elementary or composite DOT block.

Based on Lemma 5.2, we can then claim that the process-
ing paradigm of the MapReduce framework is scalable and
fault-tolerant.

Lemma 5.3. The processing paradigm of the MapReduce
framework is scalable and fault-tolerant.

Proof. It is the corollary of Lemmas 5.1 and 5.2.

5.1.2 Dryad

In Dryad, the dataflow of a big data analytics job is rep-
resented by a directed acyclic graph (DAG)

G =< VG, EG, IG, OG >,

where VG contains all vertices, EG contains all edges, IG ⊆
VG contains all inputs, and OG ⊆ VG contains all outputs.
In a DAG, there are two kinds of vertices representing data
on an underlying distributed file system and operations of
data processing, respectively. The edge represents the com-
munication among workers.

To certify that the processing paradigm of the Dryad frame-
work is scalable and fault-tolerant, we need to show that any
Dryad job can be represented by the DOT model.

Lemma 5.4. A Dryad job represented by a DAG can be
represented by a DOT expression.

Proof. We give the method used to write a DOT expres-
sion for a given DAG in Dryad. Given a DAG

G =< VG, EG, IG, OG >

and its graph of job stages

Gs =< VGs,EGs, IGs,OGs >,

the procedure of representing this DAG by a DOT expres-
sion is shown as follows.

1. Initialize a set S to ∅. This set contains the enumerated
vertices in Gs. Initialize a set U to VG. The set of U

contains the vertices that have not been enumerated
in Gs;

2. Find a vertex v in U , which does not have incoming
edge from vertices in U ;

(a) If v represents input data, find all vertices in G

corresponding to v and use a data vector ~D to
represent this input data. Then, add v into S and
remove v from U ;

(b) If v represents an operation of data processing,
create a matrix Tnew by using all corresponding
operation vertices of v in the set VG as opera-
tors of diagonal matrix Tnew. Based on EGs, find
all corresponding vertices in S pointing to v and
denote the set of these vertices as P . Then, ap-
ply

⊕

to the DOT blocks or data vectors repre-
senting source vertices in P to create a new data
vector ~Dnew. Based on the composition of edges
from vertices of P to v (pointwise composition or
complete bipartite graph), create a matrix Onew,
each element of which is either operator 1 or 0.

This matrix Onew is used to represent the edges
from vertices in P to v. Then, create a new ele-
mentary/composite DOT block, ~DnewOnewTnew.
Finally, add v into S and remove v from U ;

(c) If v represents output data, go to the next step;

3. If all vertices in U are those vertices representing out-
put data, go to step 4. Otherwise, go to step 2;

4. Use Property 2.1 to simplify the DOT expression;

5. Till this step, a DOT expression is created for the DAG
G. The result of this DOT expression is the output of
the DAG;

Thus, a Dryad job can be represented by a DOT expres-
sion.

Based on Lemma 5.4, we have shown that the process-
ing paradigm of the Dryad framework is scalable and fault-
tolerant.

Lemma 5.5. The processing paradigm of the Dryad frame-
works is scalable and fault-tolerant

Proof. It is the corollary of Lemma 5.1 and 5.4.

5.2 Evaluation and Comparison
In Section 5.1, we have shown that anyMapReduce/Dryad

job can be represented by the DOT model. If both MapRe-
duce and Dryad can execute big data analytics jobs repre-
sented by the DOT model, the DOT model can server as the
bridge for application migration between MapReduce and
Dryad. In this sub-section, we evaluate if MapReduce and
Dryad can execute big data analytics jobs represented by
the DOT model, i.e if MapReduce and Dryad can execute
elementary/composite DOT blocks and DOT expressions.
Also, since the execution of independent elementary DOT
blocks in a composite DOT block is flexible, we will com-
pare if MapReduce and Dryad support sharing data scan
among operators in the O-layer of a composite DOT block.
If both of MapReduce and Dryad can execute big data an-
alytics jobs represented by the DOT model and can share
data scan among operators in the O-layer of a composite
DOT block, these two software frameworks will not display
fundamental differences on executing a big data analytics
job.

5.2.1 Executing a DOT Block on MapReduce

We first show a general method to execute a DOT block
on MapReduce.

Lemma 5.6. A DOT block with n concurrent workers in
matrix O and m concurrent workers in matrix T can be ex-
ecuted by at most n ×m + m MapReduce jobs, where n× m

concurrent map-only MapReduce jobs represent matrix O in
the DOT block and m concurrent map-only MapReduce jobs
represent matrix T .

Proof. In a DOT block, peer workers in matrix O or
T do not have data dependency. For every chunk in data
vector ~D =

[

D1 · · · Dn
]

, there are m operators to be ap-
plied. In the worst case, m map-only MapReduce jobs are
needed to process a chunk and then generate m intermedi-
ate results for m workers in matrix T . Thus, there are n×m

independent map-only MapReduce jobs needed to perform
data processing represented by matrix O. Similarly, m inde-
pendent map-only MapReduce jobs are needed to perform
data processing represented by matrix T . Because indepen-
dent MapReduce jobs can be executed concurrently, a DOT



block with n concurrent workers in matrix O and m con-
current workers in matrix T can be executed by at most
n × m + m MapReduce jobs, where n × m concurrent map-
only MapReduce jobs represent matrix O in the DOT block
and m concurrent Map-only MapReduce jobs represent ma-
trix T .

Although, in the worst case, n×m+m map-only MapRe-
duce jobs are needed to execute a DOT block, if some op-
erators can share the data scan in a worker, the number of
needed MapReduce jobs for executing this DOT block can
be reduced. Consider a DOT block

~DOT =
[

D1 · · · Dn
]









o1,1 · · · o1,m
...

. . .
...

on,1 · · · on,m

















t1 · · · 0
...

. . .
...

0 · · · tm









,

and consider two sets R = {rp|rp ∈ {1, 2, · · · , n}} ⊆ {1, 2, · · · , n}
and C = {cq|cq ∈ {1, 2, · · · ,m}} ⊆ {1, 2, · · · ,m}. If, for a given
i ∈ R, all oi,j (j ∈ C) can share the data scan, and for a given
j ∈ C, all oi,j for every i ∈ R are the same, a single MapRe-
duce job can be used to execute operators oi,j and tj , where
i ∈ R and j ∈ C. In this MapReduce job, the map phase
will execute operators oi,j , where i ∈ R and reduce phase
will execute operators tj , where j ∈ C. The partitioning
function will distribute intermediate results from an opera-
tor oi,j to worker performing tj . Thus, the total number of
MapReduce jobs for executing a DOT block can be further
reduced.

Since, an elementary/composite DOT block can be exe-
cuted by MapReduce jobs and there is an underlying dis-
tributed file system associated with the MapReduce frame-
work, a DOT expression also can be executed by MapReduce
jobs.

5.2.2 Executing a DOT Block on Dryad

We first present a general method to execute a DOT block
on Dryad.

Lemma 5.7. A DOT block can be executed by a Dryad job
expressed by a DAG.

Proof. Given an arbitrary DOT block

~DOT

=
[

D1 · · · Dn
]













o1,1 o1,2 · · · o1,m
o2,1 o2,2 · · · o2,m
...

...
. . .

...
on,1 on,2 · · · on,m

























t1 0 · · · 0

0 t2 · · · 0
...

...
. . .

...
0 0 · · · tm













,

the corresponding DAG of the Dryad job is shown in Figure
6. In this DAG, vertices D1 to Dn represent elements of the
data vector. Operator oi,j is the operator at the ith row and
j column of matrix O. Operator in matrix T are represented
by t1 to tm in the DAG. Thus, a DOT block can be executed
by a Dryad job.

If in matrix O, some operators can share the data scan, the
DAG can be changed to represent the data scan by merging
corresponding vertices, adding new vertices for partitioning
intermediate results and adjusting edges accordingly. For
example, for every worker, if all operators of a worker in ma-
trix O can share the data scan, i.e. for all rows, all operators
in a row can share the data scan, the DAG can be changed
to Figure 7. In this DAG, Oi represents all operators of the
ith workers in the matrix O and thus it is composed by all

t1 tm

Data vector

Matrix T

Output

O1,1 O1,m On,1 On,m

Matrix O

D1 Dn

Figure 6: The DAG of a DOT block

O1 On

p1 pn

t1 tm

Matrix O

Matrix T

Output

D1 Dn

Data vector

Figure 7: An example DAG for sharing data scan

operators in the ith row, i.e. Oi = (oi,1, . . . , oi,m). Vertices
pi (1 ≤ i ≤ n) are data distribution vertices, each of which
will distribute the intermediate results generated by Oi to
corresponding workers in the matrix T represented by ver-
tices t1 to tm in the DAG, i.e. pi is responsible for all oi,j
(1 ≤ j ≤ m) and for a given j, pi will distribute results of
oi,j to tj . Finally, t1 to tm will generate the output.

Since, an elementary/composite DOT block can be exe-
cuted by Dryad jobs and there is an underlying distributed
file system associated with the Dryad framework, a DOT
expression also can be executed by a Dryad job.

5.2.3 Discussion

Through 5.2.1 and 5.2.2, we have shown that a DOT block
can be executed by MapReduce and Dryad. Also, if oper-
ators of a worker in matrix O can share data scan, both of
these two frameworks can execute these operators with a
single pass of input data. Thus, for a given DOT block, job
execution of MapReduce and Dryad are equivalently repre-
sented by the DOT model. The core computing flows of
MapReduce and Dryad are the same, although implementa-
tion details can be different. For a given big data analytics
job represented by the DOT model, the processing paradigm
of this job will be the same under the MapReduce and Dryad
frameworks.

5.3 Optimization
With optimization rules provided in Section 4, the DOT

model can be used to optimize big data analytics jobs on var-
ious frameworks. Moreover, the optimization made by the
DOT model is framework and implementation independent,
so the optimization can be automatically ported among frame-
works which can execute DOT blocks. In this sub-section,
we use a structured data analysis based on SQL conducted
on the MapReduce framework as a case study to show the
effectiveness of the DOT model in optimizing job execution.
In this case, we choose the TPC-H benchmark [4] as the
workload, which is a widely used data warehousing bench-
mark. Due to the page limit, we only present the perfor-
mance evaluation of TPC-H Q17 as a representative case.



1 SELECT sum(l_extendedprice) / 7.0 AS avgyearly
2 FROM (SELECT l_partkey, 0.2* avg(l_quantity) AS tmp
3 FROM Lineitem
4 GROUP BY l_partkey) AS t1,
5 (SELECT l_partkey,l_quantity,l_extendedprice
6 FROM Lineitem, Part
7 WHERE p_partkey = l_partkey AND
8 p_brand = ’X’ AND
9 p_container = ’Y’) AS t2

10 WHERE t2.l_partkey = t1.l_partkey AND
11 t2.l_quantity < t1.tmp;

Figure 8: A flattened variation of TPC-H Q17

Lineitem

(L)

Lineitem

(L)

Part

(P)

AGG1

(A1)

JOIN1

(J1)

JOIN2

(J2)

AGG2

(A2)

Figure 9: Query plan tree of TPC-H Q17

Because the MapReduce framework does not support nested
parallelism [16], TPC-H Q17 should be “flattened” so that
this query can be implemented in the MapReduce frame-
work. The query shown in Figure 8 with the query plan tree
shown in Figure 9 is flattened based on first-aggregation-
then-join algorithm [19].

In Figure 8, lines 2-4 are for the aggregation operation
AGG1 (A1) in the query plan tree, which generates the tem-
porary table t1. The join operation JOIN1 (J1) between
tables Lineitem (L) and Part (P) is shown in lines 5-9. The
result of J1 is the temporary table t2. Then, JOIN2 (J2)
will join tables t1 and t2. Finally, AGG2 (A2) will perform
an aggregation on the result of J2 and output the ending re-
sults. In the DOT model, each operation of A1, J1, J2 and
A2 can be represented by a composite DOT block. Then,
this query can be represented by a DOT expression, which
is

Q17 = (( ~DLOA1TA1 ⊕ ( ~DL ⊕ ~DP )OJ1TJ1)OJ2TJ2)OA2TA2.

This DOT expression can be implemented by four MapRe-
duce jobs. However, considering the optimization opportu-
nities analyzed in Section 4, a DOT expression with only
two composite DOT blocks can be used for this query. To
show the optimization procedure, without loss of generality,
we set the dimension of each matrix in the DOT expression
based on Table 1. The original DOT expression for TPC-H
Q17 is shown in Figure 10, where each operator in matrix
O is combined by an operator o that simply selects desired
records from input data vector and a partitioning operator p

that selects desired output records of operator o for a worker
in matrix T based on hash values of those records. For ex-
ample, if the hash value of a output record of operator o is
1, this output record will be collected by the first worker in
matrix T and thus, only partitioning operator p at first col-
umn of matrix O will select this record; Moreover, in Figure
10, an operator in matrix T will perform aggregation or join
operations.

The optimization procedure has three steps:
1. Because A1 and J1 share common chunks, we can

Table 1: The dimension of each matrix in the DOT expression
of TPC-H Q17

Matrix Dimension Matrix Dimension
~DL 1× 2 ~DP 1× 2

OA1 2× 2 OJ2 4× 2

TA1 2× 2 TJ2 2× 2

OJ1 4× 2 OA2 2× 2

TJ1 2× 2 TA2 2× 2

substitute the operator
⊕

between composite DOT
blocks representing A1 and J1 with operator

⊎

. Thus,
in the original DOT expression, ~DLOA1TA1 ⊕ (~DL ⊕
~DP )OJ1TJ1 is replaced by

~DLOA1TA1 ⊎ (~DL ⊕ ~DP )OJ1TJ1

=
[

DL, 1 DL, 2 DP, 1 DP, 2
]









pA1,1(oA1,1,1) pA1,2(oA1,1,2) pJ1,1(oJ1,1,1) pJ1,2(oJ1,1,2)

pA1,1(oA1,2,1) pA1,2(oA1,2,2) pJ1,1(oJ1,2,1) pJ1,2(oJ1,2,2)

0 0 pJ1,1(oJ1,3,1) pJ1,2(oJ1,3,2)

0 0 pJ1,1(oJ1,4,1) pJ1,2(oJ1,4,2)

















tA1,1 0 0 0

0 tA1,2 0 0

0 0 tJ1,1 0

0 0 0 tJ1,2









;

2. Because A1 will group records based on l_partkey and
the join condition of J1 is p_partkey=l_partkey, cor-
responding partitioning operators of A1 and J1 are the
same, i.e. pA1,1 = pJ1,1 and pA1,2 = pJ1,2. Because A1
and J1 share common operations in matrix O, we
will have

~DLOA1TA1 ⊎ ( ~DL ⊕ ~DP )OJ1TJ1

= ~DP,LOA1, J1TA1, J1

=
[

DL, 1 DL, 2 DP, 1 DP, 2
]









p1(oA1,1,1, oJ1,1,1) p2(oA1,1,2, oJ1,1,2)

p1(oA1,2,1, oJ1,2,1) p2(oA1,2,2, oJ1,2,2)

p1(oJ1,3,1) p2(oJ1,3,2)

p1(oJ1,4,1) p2(oJ1,4,2)









[

(tA1,1, tJ1,1) 0

0 (tA1,2, tJ1,2)

]

,

where p1 = pA1,1 = pJ1,1 and p2 = pA1,2 = pJ1,2.
Moreover, because t2.l_partkey=t1.l_partkey is the
join condition of J2, and notice that t2.l_partkey=
p_partkey=l_partkey and t1.l_partkey=l_partkey,
the input data vector of J2 has already been parti-
tioned, i.e. all records with the same l_partkey has
been placed in the same element of the input data vec-
tor of J2. Thus, in J2, partitioning operators pJ2,1
and pJ2,2 are not needed, and OJ2 will become to O′

J2,
which is a a diagonal matrix

[

(oJ2,1,1, oJ2,3,1) 0

0 (oJ2,2,2, oJ2,4,2)

]

.

3. Because O′
J2 is a diagonal matrix, considering the rule

of Exploiting the Potential of Parallelism in sec-
tion 4.4, O′

J2 and TJ2 can be merged into TA1, J1.
Thus, A1, J1 and J2 can be represented by a single
composite DOT block. An equivalent DOT expression
for TPC-H Q17 will only need two composite DOT
blocks. This final optimized DOT expression is shown
in Figure 11.



Q17 =(( ~DLOA1TA1 ⊕ (~DL ⊕ ~DP )OJ1TJ1)OJ2TJ2)OA2TA2

=((
[

DL, 1 DL, 2
]

[

pA1,1(oA1,1,1) pA1,2(oA1,1,2)

pA1,1(oA1,2,1) pA1,2(oA1,2,2)

] [

tA1,1 0

0 tA1,2

]

⊕

(
[

DL, 1 DL, 2
]

⊕
[

DP, 1 DP, 2
]

)









pJ1,1(oJ1,1,1) pJ1,2(oJ1,1,2)

pJ1,1(oJ1,2,1) pJ1,2(oJ1,2,2)

pJ1,1(oJ1,3,1) pJ1,2(oJ1,3,2)

pJ1,1(oJ1,4,1) pJ1,2(oJ1,4,2)









[

tJ1,1 0

0 tJ1,2

]

)









pJ2,1(oJ2,1,1) 0

0 pJ2,2(oJ2,2,2)

pJ2,1(oJ2,3,1) 0

0 pJ2,2(oJ2,4,2)









[

tJ2,1 0

0 tJ2,2

]

)

[

pA2,1(oA2,1,1) pA2,2(oA2,1,2)

pA2,1(oA2,2,1) pA2,2(oA2,2,2)

] [

tA2,1 0

0 tA2,2

]

Figure 10: The original DOT expression for TPC-H Q17

Q17 =( ~DP,LOA1, J1, J2TA1, J1, J2)OA2TA2

=(
[

DL, 1 DL, 2 DP, 1 DP, 2
]









p1(oA1,1,1, oJ1,1,1) p2(oA1,1,2, oJ1,1,2)

p1(oA1,2,1, oJ1,2,1) p2(oA1,2,2, oJ1,2,2)

p1(oJ1,3,1) p2(oJ1,3,2)

p1(oJ1,4,1) p2(oJ1,4,2)









[

tJ2,1((oJ2,1,1, oJ2,3,1)(tA1,1 , tJ1,1))

0 tJ2,2((oJ2,2,2, oJ2,4,2)(tA1,2, tJ2,2))

]

)

[

pA2,1(oA2,1,1) pA2,2(oA2,1,2)

pA2,1(oA2,2,1) pA2,2(oA2,2,2)

] [

tA2,1 0

0 tA2,2

]

Figure 11: The final optimized DOT expression for TPC-H Q17

To evaluate the benefits provided by above optimization,
we compare our prototype SQL-to-MapReduce translator
(YSmart) shown in [20] with Hive [26] (a widely used open
source data warehousing system on top of MapReduce) on
Amazon EC2 [5] and a Facebook production cluster. The
optimized code generated by our prototype has two MapRe-
duce jobs. While, the unoptimized code generated by Hive
has four MapReduce jobs. On both environments, the speedup
achieved by optimized code is more than 2 times. The de-
tailed evaluation can be found in [20].

5.4 Simulation
Several software frameworks on distributed systems have

been recently developed for big data analytics, e.g. Google
MapReduce [11], Hadoop [1], Dryad [17], Ciel [23] and
Pregel [22]. Although these frameworks may have different
design and implementation features, they share the same
goals and even follow the basic computing/communication
patterns to ensure scalability and fault-tolerance as we have
discussed in the paper. The development of these soft-
ware systems can be very expensive. Since the DOT model
presents an abstraction of a job execution layer for big data
analytics in a scalable and fault tolerant way, it would lead to
a cost-effective software development. Figure 12 presents a
simulation structure for software design based on the DOT
model, where the job execution layer is abstracted by the
DOT model bridging between jobs and the underlying sys-
tem. The storage layer simulates the data storage services,
such as a distributed file system, and the network layer sim-
ulates the data transfer on a specific network configuration.
Both storage and network layers are pluggable in the sim-
ulator. With this DOT-based simulation, a software design
for big data analytics can be carefully evaluated in a cost-
effective way before it is implemented.

6. OTHER RELATED WORK
In the traditional parallel computing field, there are sev-

eral “scale-up”models for high performance computing. The
parallel random access machine (PRAM) [6] model provides

Job Execution Layer (The DOT model) 

Storage Layer (User specified)

Network Layer (User specified)

Job Job Job Job

Figure 12: The architecture of the big data analytics framework
simulator based on the DOT model

an abstract parallel machine for theoretical studies. The
bulk-synchronous parallel (BSP) model [27] defines a bridg-
ing model for general-purpose parallel computation. The
latency model [29] and LogP model [10] are experimental
metrics for communication performance of parallel comput-
ers. Since these four models do not treat data as a first-class
object, they are not suitable for modeling big data analytics.

Recent modeling efforts for big data analytics have been
made for specific frameworks. The study in [13] introduces
an algorithmic model for massive, unordered and distributed
computation, which is an important class of computation
executed on the MapReduce framework. The study in [18]
proposes a model of computation for the MapReduce frame-
work. Comparing to these framework specific models, our
DOT model aims to bridge big data analytics applications
and various software frameworks, and to provide a set of
framework and implementation independent optimization
rules for applications.

There are also a few experiment-based studies aiming to
compare different software frameworks under different con-
texts. The study in [28] analyzes and compares different
approaches to distributed aggregation in parallel database
systems, Hadoop and Dryad. The study in [25] compares
performance and scalability between Hadoop and parallel
database systems, and the study in [7] further compares
fault-tolerance among these two frameworks and a hybrid
solution.



7. CONCLUSION AND FUTURE WORK
We have presented the DOT model for analyzing, opti-

mizing, and deploying software for big data analytics in dis-
tributed systems. As a bridging model between various ap-
plications and different software frameworks to execute big
data analytics jobs, the DOT model abstracts basic com-
puting and communication behavior by three entities: (1)
distributed data sets, (2) concurrent workers, and (3) sim-
ple mechanisms with optimized efficiency to regulate interac-
tions between the workers and the data sets. We have shown
that the processing paradigm of the DOT model is scalable
and fault-tolerant. Based on the DOT model, we further
present a set of critical optimization rules that are frame-
work and implementation independent. We have demon-
strated the effectiveness of the DOT model by certifying and
comparing the scalability and fault-tolerance of processing
paradigms of MapReduce and Dryad. We also have shown
the effectiveness of optimization rules provided by the DOT
model for complex analytical queries.

Our future work has two directions: (1) we will extend
and enhance the DOT model to explore other factors that
will impact the scalability and fault-tolerance of big data
analytics jobs, e.g. characteristics of storage and network in-
frastructures; and (2) under the guidance of the DOTmodel,
we will design and implement a simulator for big data an-
alytics software frameworks and an automatic application
migration tool among different software frameworks.
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