
1

Spark-GPU: An Accelerated In-Memory Data

Processing Engine on Clusters
Yuan Yuan∗, Meisam Fathi Salmi†, Yin Huai‡, Kaibo Wang§, Rubao Lee∗ and Xiaodong Zhang∗

∗The Ohio State University †Paypal Inc. ‡Databricks Inc. §Google Inc.
∗{yuanyu, liru, zhang}@cse.ohio-state.edu †mfathisalmi@paypal.com ‡yhuai@databricks.com §kaibo@google.com

Abstract—
Apache Spark is an in-memory data processing system that

supports both SQL queries and advanced analytics over large
data sets. In this paper, we present our design and implementa-
tion of Spark-GPU that enables Spark to utilize GPU’s massively
parallel processing ability to achieve both high performance and
high throughput. Spark-GPU transforms a general-purpose data
processing system into a GPU-supported system by addressing
several real-world technical challenges including minimizing
internal and external data transfers, preparing a suitable data
format and a batching mode for efficient GPU execution, and
determining the suitability of workloads for GPU with a task
scheduling capability between CPU and GPU. We have com-
prehensively evaluated Spark-GPU with a set of representative
analytical workloads to show its effectiveness. Our results show
that Spark-GPU improves the performance of machine learning
workloads by up to 16.13x and the performance of SQL queries
by up to 4.83x.

I. INTRODUCTION

R&D for data processing to handle increasingly big volumes

of data has been rapidly advanced in two stages. In the first

stage, scalable systems based on scale-out models have been

developed. One such system is Hadoop [1], which is an open

source implementation of MapReduce [10]. Several widely

used data processing systems have been built on top of Hadoop

(e.g., Pig [29] and Hive [22]), We have entered the second

stage of R&D striving for high performance in data process-

ing. The efforts mainly come from best utilizing advanced

and low cost commodity devices, such as multicores [26],

GPUs [39], and SSDs [28]. In this stage, one of the most

attractive approaches to improve performance is in-memory

computing. With the increase of DRAM capacity and drop of

its price, more and more application’s data sets can be fit into

a cluster’s memory [6]. Utilizing main memory to improve

the performance of data analytics applications have become

desirable and feasible.

Apache Spark is a representative open-source, distributed

in-memory data processing system [2], [40], which has gained

popularity for its improved performance over Hadoop. It not

only supports executing SQL queries [7], but also provides

procedural processing ability for advanced data analytics such

as machine learning and graph applications [12]. With in-

memory data processing, the performance bottleneck of data

analytics applications has shifted from disk I/O and network to

computations, as is the case for Spark [31]. As a result, it be-

comes critical to well utilize the various computing resources

(e.g., multi-core CPUs and GPUs) in modern clusters to further

improve the performance of data analytics applications.

We have looked into the specific computing demands for

Spark, which are characterized by two unique execution pat-

terns. First, data analytics applications running on Spark have

rich data parallelism. Spark abstracts data into Resilient Dis-

tributed Datasets (RDDs) [40], and data analytics applications

on Spark are built with a set of operations on the RDDs. Each

RDD operation applies to all the data in the RDD. Second,

many data analytics applications are compute-intensive. Com-

plex, iterative computations are conducted in these applications

such as machine learning. These two patterns make GPU an

ideal computing device to accelerate Spark’s performance.

GPU is a massive parallel computing device with high com-

putational power and memory bandwidth, which are suitable

for data-parallel applications. The research community has

extensively studied how to utilize GPUs to accelerate various

data analytics applications, including SQL queries [18], [39],

NoSQL operations [41], [20], machine learning [9] and graph

applications [15]. The performance of these applications can

be significantly improved with GPUs. However, many of these

work adopt a GPU-centric design (e.g., [39], [41]), which

redesigns the system based on GPU’s characteristics to maxi-

mize GPU’s performance without considering the performance

of CPU operations. Apache Spark is a CPU-optimized data

processing system. It is unclear how much it can benefit from

the high performance GPUs considering the different types of

optimizations for CPU and GPU.

In this paper, we explore how to use GPUs to accelerate

the performance of various data analytics applications on

production-level, CPU-optimized distributed in-memory data

processing systems such as Apache Spark. Specifically, we

have designed and implemented Spark-GPU, a CPU-GPU

hybrid data analytics system that can not only run SQL queries

but also various complex data analytics applications on both

CPUs and GPUs. We present a set of designs that effectively

connect GPUs to Spark to best utilize GPU’s capability. Spark-

GPU uses heuristic rules to offload SQL queries to GPUs and

provides block processing ability for GPUs to get the best

performance of data analytics applications. Our comprehensive

evaluation shows that Spark-GPU can achieve up to 4.83x

performance speedup for SQL queries, and achieve up to

16.13x performance speedup for compute-intensive machine

learning applications.

The major contributions we have made are as follows.

2

• We have identified and analyzed the challenges for

effectively using GPUs in distributed in-memory data

processing systems.

• We have designed and implemented Spark-GPU, which

best utilizes GPU’s capability with reasonable changes in

Spark.

• We have comprehensively evaluated the system’s perfor-

mance with various representative workloads and illus-

trate the pros and cons of using GPUs in Spark.

• We provide an efficient methodology to integrate GPUs

into in-memory data processing systems.

The rest of the paper is organized as follows. Section

II describes the overall architecture of Spark-GPU. Section

III, Section IV and Section V describe the detailed designs

of Spark-GPU. Section VI presents the evaluation results of

Spark-GPU. After introducing the related work in Section VII,

Section VIII concludes the paper.

II. SPARK-GPU OVERVIEW

This section introduces the challenges of using GPUs in

Spark and presents an overview of Spark-GPU, which has

overcome all the challenges and can efficiently execute various

data analytics applications on both CPUs and GPUs.

A. Challenges

Data analytics applications running on Spark usually have

rich data parallelism, which naturally matches GPU’s parallel

architecture. However, due to the unique properties of Spark

and GPU, it is a non-trivial task to efficiently use GPUs in

Spark. In order to make GPUs well handle data analytics

applications running on Spark, the following challenges must

be addressed.

• First, Spark uses the iterator model [14] to execute

applications. Each RDD in Spark implements an iterator

interface, which computes and returns one element of

the RDD when it is called. The one-element-a-time

iterator model has advantages such as simplicity and

flexibility. However, it doesn’t match GPU’s architecture

and can significantly underutilize GPU resources. To

maximize GPU’s performance, the system must support

block processing and convert the data into GPU-friendly

format before processing on GPUs. These operations can

introduce expensive data copying operations, which must

be minimized in the system design.

• Second, Spark is implemented in a managed language

(i.e. Scala) and runs on top of a Java Virtual Machine

(JVM) with automatic memory management and garbage

collection. Data in Spark are represented as Java/Scala

objects and are stored on the heap memory of JVM. How-

ever, GPU programs are usually implemented with GPU

programming models such as CUDA [3] and OpenCL [4],

which cannot access data stored in Java heap memory. As

a result, to offload computations to GPUs, data must be

frequently copied between Java heap memory and native

memory, which is expensive. A software mechanism of

minimizing data copying between Java heap memory and

native memory must be developed in order to gain high

performance from GPUs.

• Third, existing cluster resource manages such as Yarn

[36] and Mesos [21] manage GPUs in a coarse-grained

way, which exclusively assigns a GPU to a task. This

underutilizes GPU resources. The major challenge to

share GPUs is that GPU doesn’t have the same level of

operating system support as CPU does. Operating system

doesn’t provide virtual memory management for GPU

device memory. Instead, each GPU program manages

GPU device memory itself. In this case, when multiple

GPU programs are running concurrently on GPUs, they

may crash due to insufficient GPU device memory.

Fig. 1: The overall architecture of Spark-GPU.

B. An Overview of Spark-GPU

Spark-GPU handles all the aforementioned challenges to

efficiently execute data analytics applications on GPUs. Figure

1 shows Spark-GPU’s architecture. Several components in

Spark have been modified.

First, Spark-GPU extends Spark’s iterator model to support

block processing on GPUs, which can better exploit GPU’s

massive parallelism and high memory bandwidth. Section III

introduces how to support and use block processing on top of

Spark’s iterator model.

Second, Spark-GPU extends Spark’s SQL module to offload

SQL queries to GPUs. Spark-GPU introduces a set of high

performance GPU query operators to Spark and extends its

query optimizer to generate query plans with both CPU query

operators and GPU query operators. Section IV explains how

SQL queries are processed on GPUs.

Third, in order to efficiently execute data analytics applica-

tions on GPUs, Spark-GPU extends Spark’s cluster manager

and task scheduler to manage GPUs in the cluster. All schedul-

ing decisions in Spark are based on operations in data analytics

applications. Each operation takes an RDD or multiple RDDs

as input and outputs a new RDD. Spark maintains a lineage

graph of RDDs and divides the graph into one or more stages.

Each stage is a unit of execution and will be executed by a set

of tasks. Spark-GPU manages GPU resources and schedules

GPU tasks to GPU nodes. Section V presents how Spark-GPU

manages GPU resources and schedules tasks.

3

III. EXECUTION MODEL AND DATA FORMAT

GPU is a massively parallel co-processor, which executes

GPU kernels 1 in a Single Instruction Multiple Threads (SIMT)

way. To maximize GPU’s performance, two requirements must

be met. First, each GPU kernel should be launched with

a large number of GPU threads, which can utilize GPU

computing resources and hide GPU memory access latency

to achieve high throughput. Second, to fully utilize GPU’s

memory bandwidth, data should be accessed in a coalesced

manner, where consecutive GPU threads access consecutive

GPU memory locations, as shown in Figure 2.

Fig. 2: An example of coalesced GPU memory access.

To meet the first requirement, a system needs to support

block processing model [32] that processes a block of data

elements at a time. To meet the second requirement, a system

needs to organize data into an appropriate format such that

they can be accessed in a coalesced way. However, Spark

doesn’t meet these two requirements. It adopts the iterator

model and computes one element at a time using row format,

which may significantly underutilize GPU resources. In this

case, to efficiently harness GPU resources, block processing

and other data formats such as column format should co-exist

with the iterator model and row format in the system.

A. Our Solution: GPU-RDD

Spark’s design is centered around the concept of RDD. To

support block processing, we introduce a new type of RDD:

GPU-RDD, which buffers all its data in either row format or

column format in native memory. Each GPU-RDD provides

two interfaces to access the data: one is the standard RDD

interface, which returns one element each time the interface

is called; the other is a block interface, which returns the

addresses of its buffered data. The standard interface makes it

easy to integrate GPU-RDDs into existing Spark data flows.

Moreover, the block interface provides applications the ability

to apply an operation on GPU-RDD to all the buffered data at

one time, which can better utilize modern parallel computing

devices (e.g., GPUs).

GPU-RDDs can be derived from existing RDDs or other

GPU-RDDs. By default data in GPU-RDDs are stored in

column format since it may better utilize GPU’s memory band-

width. However, applications can always choose row format

when creating GPU-RDDs if it guarantees better performance.

Spark-GPU uses BlockRecords to represent data in a GPU-

RDD. A BlockRecord corresponds to one partition of data in

the RDD. It contains both buffered data and the corresponding

metadata such as the number of elements in the partition, data

types and others. The buffered data can be stored in either one

continuous memory region (for both row format and column

1A GPU kernel is a program executed on the GPU.

format) or different memory regions where only data in the

same column are stored in a continuous memory (for column

format only). The best way to arrange the data depends on

computation patterns. For data analytics applications such as

SQL queries, it is common that only a small subset of the

columns will be used in the computation. In this case, data

can be stored in separate memory regions. On the other hand,

if all the data are used in the computation or the data have a

large number of columns, they should be stored in one memory

region such that PCIe data transfer overhead can be minimized.

Spark-GPU utilizes native memory instead of Java heap

memory to buffer data in GPU-RDDs, which has two major

advantages. First, it saves one data copying operation inside

Java heap memory. Data in native memory can be directly

transferred to GPUs to process. Second, it doesn’t increase

the overhead of Java memory management. Large usage of

Java heap memory leads to more frequent garbage collection

activities, which can significantly degrade the system’s perfor-

mance.

GPU-RDD’s native memory is released either by JVM at the

time when the object is garbage collected or by applications

that explicitly execute memory release function calls. Since

RDDs are read-only (note that an operation on a RDD will

create a new RDD) and GPU-RDDs buffer data, naively allo-

cating memory for GPU-RDDs can pressure system memory

usage, which may significantly degrade system’s performance

when running out of memory. Spark-GPU optimizes native

memory usage when there are several consecutive GPU-RDDs.

Instead of buffering data for each GPU-RDD, Spark-GPU

only keeps the native memory for the last GPU-RDD of the

consecutive GPU-RDDs. All native memory used by other

GPU-RDDs will be immediately released.

B. GPU Processing with GPU-RDDs

Operations on GPU-RDDs can be offloaded to GPUs.

Spark-GPU supports several built-in GPU-RDD operations

such as filter and map that are executed on GPUs. These

built-in operations have data parallelism and are usually used

in data preprocessing. To conduct more complex GPU-RDD

operations on GPUs, users need to implement their own

customized functions, each of which computes one partition

of data in the RDD (represented by one BlockRecord).

Since GPU is usually programmed with CUDA or OpenCL

while Spark is implemented in Scala, each GPU customized

function must consist of a native function that is implemented

in CUDA or OpenCL, and a Scala wrapper on top of the native

function. The native function utilizes GPUs to implement

the core functionality of the customized function. The Scala

wrapper provides an interface that can be executed in Spark-

GPU and interacts with the native function through Java Native

Interface (JNI).

The efforts of developing customized functions for Spark-

GPU are similar to that of developing a single node GPU

program. Spark-GPU provides primitive GPU operations and

system support for efficient usage of GPUs while the data an-

alytics applications determine whether they should use GPUs.

Using GPUs with GPU-RDDs is not free, because it in-

troduces overheads of extra data copying operations between

4

 0

 500

 1000

 1500

 2000

 2500

 1 2 3 4 5 6 7 8

E
xe

cu
tio

n
T

im
e

(m
s)

Number of columns

Creating GPU-RDD
Projecting GPU-RDD
Projection in Spark

Fig. 3: The execution time of the micro benchmark with

different number of string columns in a row.

Java heap and native memory, and between native memory

and GPU device memory. In general, the following steps

are needed to offload an operation on GPU-RDD to GPUs:

(1) copying data from Java heap to native memory to create

the GPU-RDD; (2) transferring data to GPU device memory;

(3) computing on GPUs; (4) transferring results from GPU

device memory to native memory; and (5) copying results from

native memory to Java heap. Compared to directly executing

the operation on CPUs, offloading it to GPUs introduce data

copies illustrated in step (1), (2), (4) and (5). Note that step

5 only happens when the GPU-RDD’s standard data access

interface is called.

Data copying is expensive and can degrade GPU’s perfor-

mance advantage. To illustrate its overhead, we conducted

a micro benchmark on Spark-GPU. The micro benchmark

simply created a GPU-RDD from a Spark RDD and then

projected all the data by calling GPU-RDD’s standard data

access interface. We executed the micro benchmark on a single

node with 16 CPU cores and 32 GB memory. We set the total

number of rows in the RDD to 2 million and set each column

in the row to be a 16-byte string. The reason we used string

type is that creating string object in Java heap is expensive.

We varied the number of columns in the row and measured

the execution time of the micro benchmark. For comparison,

we also reported the execution time of directly projecting all

the rows in Spark. The results are shown in Figure 3.

The micro benchmark demonstrates the expensive overheads

of data copying with GPU-RDDs in Spark-GPU. The overhead

increases with the size of data. When there were 8 string

columns in a row, the execution time of creating the GPU-

RDD was 18.3x longer than projecting the rows in Spark, and

the execution time of projecting all the data in the GPU-RDD

to rows was 10.5x longer. The reason for the high overhead

is that a Java string object cannot be directly copied to the

native memory. The string object must first be converted to a

byte array and then copied byte by byte to the native memory,

which is expensive. This indicates that if an operation doesn’t

conduct much computation on each partition of data, it should

not be offloaded to GPUs.

GPU’s performance advantage comes from its high paral-

lelism and high memory bandwidth. To decide if an operation

can benefit from GPUs, three factors should be considered:

(1) whether the operation is compute-intensive; (2) whether

the operation accesses the same data multiple times; and (3)

whether there are multiple consecutive GPU operations on the

data. If any of the three factors hold, the operation should be

considered to be offloaded to GPUs.

IV. QUERY PROCESSING ON GPUS

SQL queries are important data analytics applications. A

major difference between SQL queries and other data analytics

applications is that SQL queries only specify what to compute,

not how to conduct the computation. It is the data processing

system that determines the query execution logic. In this

case, to efficiently execute SQL queries on CPUs and GPUs,

Spark-GPU implements a set of high performance GPU query

operators, and extends Spark’s query optimizer to build a query

execution plan with both CPU query operators and GPU query

operators. In this section we first introduce the design of GPU

query operators in Spark-GPU. Then we present the GPU-

aware query optimizer and describe optimization techniques

to improve query performance on Spark-GPU.

A. GPU Query Operators

Spark-GPU supports five important GPU query operators:

GPU scan, GPU broadcast join, GPU hash join, GPU ag-

gregation and GPU sort, which can be used as the building

blocks for a wide range of SQL queries. Each GPU query

operator includes a Scala wrapper and a native function. The

Scala wrapper implements an iterator interface that returns a

data element in row format each time it is called. The native

function processes column data on GPUs using standard GPU

programming models.

1) GPU Scan: The GPU scan operator implements selec-

tion operation on in-memory data, which will return all data

that satisfy the query predicates. To use the GPU scan operator,

data must be either explicitly cached in Java heap memory or

stored in native memory.

The major selection operation is computed on GPUs, which

contains three steps: (1) evaluating query predicates; (2) cal-

culating output position and (3) projecting the results. In the

first step, query predicates are evaluated and a 0/1 vector is

maintained to keep track of data that satisfy the predicates. In

the second step, a prefix sum is calculated on the 0/1 vector to

decide the start writing positions for GPU threads in the result

buffer to avoid synchronizations when writing the results. In

the last step, based on the 0/1 vector and prefix sum, data that

satisfy the query predicates are generated.

2) GPU Broadcast Join and Hash Join: Join is one of

the most important SQL operations. Spark-GPU supports two

kinds of equi-join operators on GPUs: GPU broadcast join

and GPU hash join. The GPU broadcast join operator first

broadcasts the smaller one of the two input tables. Then it

joins the broadcasted table with each data partition of the other

table. The GPU hash join operator first repartitions the data

based on the hash values of join keys, which will shuffle data

in both tables. Then it joins each pair of repartitioned data.

Spark-GPU executes the join part on GPUs for both oper-

ators. We implement the conventional hash join algorithm on

GPUs since it performs well especially when the sizes of the

two tables differ significantly [8]. It has a build phase and a

probe phase.

5

In the build phase, a hash table is built on one table. We

store the hash table in a continuous memory inside GPU such

that it can be searched efficiently. Each hash table entry is

a (id, value) pair where id denotes the hash key and value

denotes the position of data in the partition. We scan the build

table twice to avoid synchronizations when building the hash

table. The first scan simply counts the number of keys that

are hashed to each hash value while the second scan directly

to writes to the hash table memory without synchronizations

based on the prefix sum of the first scan results.

The probe phase is straightforward. The join key column

from the other table is scanned to probe the hash table and

a 0/1 vector is maintained to indicate which data should be

projected. Similar to GPU scan operator, a prefix sum is

calculated on the vector such that the results can be generated

without synchronizations.

3) GPU Aggregation: Aggregation divides data into groups

and calculates various functions inside each group. The GPU

aggregation operator is implemented as a partial aggregation

followed by a global aggregation. The partial aggregation

directly aggregates each partition of the input data, which

significantly reduces the amount of data to be shuffled. After

that, the aggregation results of each partition is shuffled and the

final aggregation results are calculated. Standard aggregation

functions such as SUM and AVG are supported in Spark-GPU.

Spark-GPU only executes partial aggregation on GPUs since

the number of data elements to be aggregated in global

aggregation is usually small. We use hash aggregations on

GPUs. All group-by keys are converted into strings to calculate

hash values. When calculating the aggregation results, we use

standard GPU library’s atomic operations to synchronize GPU

threads when they are updating aggregation results for the

same group. Since atomic operations on 64-bit words with

type long and double are not supported on many GPUs, Spark-

GPU converts data with type long or double to float before

aggregation on GPUs and converts the result type back when

aggregation finishes.

4) GPU Sort: The logic of GPU sort operator is similar

to that of GPU aggregation operator. GPU sort operator first

sorts each data partition on GPUs. Then it shuffle-sorts data

in all partitions.

Spark-GPU implements bitonic sort on GPUs. Since sort is

usually executed after aggregation in SQL queries, the number

of data elements to sort is relatively small. In this case, GPU

shared memory can be used for sorting. Keys (i.e. columns in

query’s order-by clause) are sorted first on GPUs. If there are

multiple order by columns in the query, data will be sorted by

each column one by one. After the keys are sorted, the results

can be generated using a gather operation.

B. GPU-Aware Query Optimizer

Given an SQL query, the query optimizer finds the best

execution plan with existing query operators. Spark’s query

optimizer is designed with a set of rules and strategies. Rules

are used to generate optimized logical query plan and strate-

gies are used to generate optimized execution plan. Currently

Spark’s query optimizer doesn’t have an accurate cost model

to estimate which execution plan does the best job, thus it

simply picks the first plan to execute the query.

To generate query execution plans with both CPU opera-

tors and GPU operators, Spark-GPU extends Spark’s query

optimizer by adding a set of new GPU strategies. Spark-GPU

guarantees that if a query plan with GPU query operators is

generated, it will be the first physical plan among all plans

and thus will be used to run the query.

Given a logical plan, the criteria to determine whether to

use a GPU query operator are: (1) GPU can improve the

operator’s performance; and (2) there exist a chain of GPU

query operators that process the data in native memory before

copying the data back to Java heap. If either of the above

criteria holds, the query optimizer will choose a GPU query

operator. Otherwise it will use Spark’s existing CPU query

operators. The following GPU strategies are added:

• Join operators are offloaded to GPUs. If the size of one

join table is smaller than Spark’s broadcast threshold,

GPU broadcast join operator is used. Otherwise GPU

hash join operator is used. The rationale is that the perfor-

mance of join operator is bounded by memory accesses.

It can benefit from GPU’s high memory bandwidth, thus

GPU join operators will always be used.

• The children of GPU broadcast join should use GPU

operators whenever possible. The rationale is to push as

many operations as possible to GPUs when data are in

native memory. Note that this doesn’t work for other join

operators since they will shuffle data from both tables.

• If an aggregation can be divided into a partial aggregation

and a global aggregation, GPU aggregation operator

will be used because aggregation is compute intensive

operation. The child of the GPU aggregation will also be

executed with GPU query operators if possible.

• If the child of sort is a GPU operator, GPU sort operator

will be used. The rational is to push as many operations

as possible to GPUs when data are in native memory.

Not that not all query operations are suitable for GPUs. For

example, if a query only contains a simple scan operator, it

will be executed on CPUs.

C. Optimizations

Spark-GPU executes queries on both CPUs and CPUs.

However, this doesn’t guarantee optimal performance due to

query operator’s iterator interface. We use the following query

to illustrate the problem. The query first scans a large table

lineorder and a small table supplier and then joins the tuples

that satisfy the scan predicates.

select s_nation, lo_revenue
from lineorder join supplier
on lo_suppkey = s_suppkey
where s_region = ’ASIA’ and lo_discount<5

Spark-GPU executes the query with two GPU scan operators

followed by a GPU broadcast join operator. Since query

operators are connected by the row-format iterator interface,

scan results of the large table lineorder must be copied from

native memory to Java heap and materialized into row format

after the GPU scan, and copied back to native memory and

6

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10 12 14 16

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Number of tasks running concurrently on the GPU

1:1
10:1
100:1

Fig. 4: Normalized performance when different number of

tasks are running concurrently on the GPU.

batched to column format before joining on GPUs. These data

copying operations are unnecessary since the results of GPU

in-memory scan of the large table lineorder are already in

native memory and can be directly used for joins on GPUs.

To solve the problem, Spark-GPU introduces a batch in-

terface to connect GPU query operators. The batch interface

executes the operator on GPUs and returns the data in column

format in native memory, not in row format in Java heap.

The original iterator interface is implemented on top of the

batch interface. When a GPU query operator is fetching data

from another GPU query operator, it can directly call the batch

interface to get the data addresses in native memory, which

avoids the unnecessary data copying operations and improves

the query performance.

V. GPU RESOURCE MANAGEMENT

GPUs should be efficiently managed in the cluster. A

straightforward approach to manage GPUs is to treat each

GPU as a CPU core and manage GPUs in the same way

as CPUs. In this case, when a task requires a GPU, a GPU

will be exclusively assigned to the task until the task finishes.

This coarse-grained management approach has been adopted

in MapReduce Hadoop systems (e.g., [16]) to manage GPU

resources. Although this approach makes GPUs available in

the cluster, it may underutilize GPU resources, which may in

turn degrade the performance of GPU applications.

To understand the problem, we implemented a synthetic

GPU workload on Spark-GPU and measured its performance

when varying the number of tasks that can be concurrently

executed on a GPU. The workload contains three simple

operations: (1) transferring data to the GPU; (2) accessing data

inside the GPU and (3) generating a constant number as result.

We control the number of times that data are accessed inside

the GPU to control the ratio of computation time and PCIe data

transfer time to simulate workloads with different computation

intensity. Three computation/PCIe ratios were used: 1:1, 10:1

and 100:1. The experiments were conducted on a 16-core node

with one GPU. Thus the maximum number of concurrent GPU

tasks was 16. The input data were cached in memory and had

16 partitions. The size of each partition was 128MB. For each

computation/PCIe ratio, we used the workload performance

when only one task can be executed on the GPU as the baseline

and normalized all other performance to the baseline. The

execution results are shown in Figure 4.

Two observations can be obtained from Figure 4. First, GPU

sharing improves the performance of GPU applications on

Spark-GPU. When computation/PCIe ratio is 1:1, performance

is improved by more than 2x. Second, increasing computa-

tion/PCIe ratio will decrease the performance benefits obtained

from sharing GPUs. The fundamental factor that determines

the benefit of GPU sharing is the amount of work that can

be executed in parallel when running tasks on GPUs. To

offload an operation to GPUs, Spark-GPU needs to copy data

between native memory and Java heap, transfer data between

native memory and GPU device memory through the PCIe bus,

and execute kernel on GPUs. Among these operations, two

combinations of operations are executed serially. First, kernel

executions can hardly be executed in parallel due to GPU’s

LEFTOVER resource management [33]. Second, PCIe data

transfer in the same direction must be executed serially due

to hardware limitations. All other combinations of operations

can be overlapped and thus benefit from sharing GPUs.

It is necessary for Spark-GPU to manage GPUs in a fine-

grained way to enable GPU sharing. The reasons are twofold.

First, Spark-GPU is a general purpose data processing engine.

It needs to benefit as many workloads as possible with the high

performance GPUs. Second, GPU sharing can improve the

system throughput by overlapping operations from different

GPU tasks.

The major obstacle for sharing GPUs in the cluster is that

operating system and GPU drivers lack support of virtual

memory management for GPUs. Currently GPU memory is

managed by GPU applications. As a result, when a GPU

is shared by multiple GPU tasks, task crash may happen

due to insufficient GPU memory. Although some crashes can

be avoided by controlling data partition size in the cluster,

the system needs to provide the ability to manage GPU’s

memory such that it can concurrently execute GPU tasks when

necessary.

A. Our Solution: User-Level GPU Management

We design a user-level library to manage GPU memory

motivated by existing research (e.g., [23], [38], [37]). We

have two design goals. First, the library should be transparent

to both GPU programs and the operating system. Second,

the overhead of memory management should be as low as

possible. Prior works (e.g., [23], [38], [37]) require modi-

fications to either GPU programming interface or operating

system to improve workload performance in the scenario when

there are not enough device memory on the GPU. These

modifications will greatly limit the GPU workloads that can

be processed by the system. In Spark-GPU, our design of

the library is optimized for the regular scenario where GPU

memory contention is rare. The library guarantees that tasks

will not crash due to GPU memory contention. When GPU

memory contention happens, Spark-GPU will stop scheduling

new tasks to the GPU because GPU task’s performance can

be severely degraded due to frequent data swap activities over

PCIe bus.

Figure 5 shows the architecture of the GPU management

library. The library works as a layer between the GPU tasks

and the standard GPU library. It intercepts all GPU related

system calls (e.g., GPU memory allocation, free and kernel

7

Fig. 5: The architecture of GPU management library.

launch) from the tasks running on the node to manage the

usage of GPU memory. The library manages GPU memory

based on the concept of regions. A region contains a GPU

buffer and a CPU buffer. The CPU buffer is used for storing

the data in the GPU buffer when the library decides to swap

out the region. When a task tries to allocate GPU memory, a

new region with a CPU buffer is created. The region’s GPU

buffer is not created until the task tries to access the data in the

buffer in the kernel. When there are not enough GPU memory,

the library scans the existing regions and swaps out an unused

region.

In Spark-GPU, each worker in the cluster needs to load

the GPU management library when it starts. With the GPU

management library, each GPU task has the illusion that it

can use the whole GPU resource even through the GPU is

shared.

B. GPU Abstraction and Task Scheduling

Spark-GPU enables GPU sharing in the cluster. It abstracts

each GPU into multiple logical GPUs. Each logical GPU can

run one GPU task. GPU’s sharing granularity is configurable.

Users need to explicitly set the number of available GPUs

on each node and how many GPU tasks can be concurrently

executed on each GPU. Note that the total number of GPU

tasks that can be concurrently executed on one node cannot

exceed the total number of CPU cores on the node, since each

GPU task needs a CPU core to initiate the task.

Spark-GPU schedules tasks based on RDD lineage graph.

To schedule tasks to GPUs, the scheduler checks if a stage

contains any RDD that is created by a GPU operation (e.g.,

an SQL GPU operator and a GPU-RDD operation). If a stage

contains any GPU operation, it will only be scheduled to nodes

that have GPUs and that have at least one available CPU core.

GPU tasks on the same node are scheduled to the GPU in a

FIFO way.

VI. EXPERIMENTS

In this section we comprehensively study the performance

of Spark-GPU. Our goal is to illustrate the strength and

limitations of using GPUs in in-memory data processing

systems. We first describe the experimental environment and

the workloads used in the experiments. Then we present the

experimental results.

The experiments have demonstrated that:

• Spark-GPU can improve the SQL query performance by

up to 4.83x, data mining and statistical workloads by

up to 16.13x, which shows Spark-GPU’s advantage in

accelerating data parallel analytics workloads with GPUs.

• Sharing GPUs in the cluster improve the performance.

The performance of SQL query can be improved by up

to 1.61x, while the improvements for data mining and

statistical workloads are marginal.

A. Experimental Environments and Workloads

We conducted all the experiments on a cluster with 9 nodes

on Amazon EC2. The EC2 instance type was g2.x2large. Each

node has a 2.6 GHZ Intel Xeon E5-2670 (Sandy Bridge)

Processor and 15 GB memory with a bandwidth of 51.2 GB/s.

There is one NVIDIA GK104 GPU on each node. The GPU

has 1536 cores, 4GB memory, with a clock frequency of

800MHZ and a memory bandwidth of 192.26 GB/s. The OS on

each node was Ubuntu 14.04. The version of NVIDIA driver

was 320.48. CUDA 6.5 was used. In the cluster, we configured

one node to be Spark’s master node (also HDFS’s namenode)

and the rest to be slave nodes. Spark 1.6.0 and Hadoop 2.6.0

were used in the experiments. Spark-GPU was developed on

top of Spark 1.6.0.

We examined the performance of Spark-GPU using work-

loads from four categories: data mining, statistical analysis,

Star Schema Benchmark [30] queries and TPC-H benchmark

[5] queries. The data mining and statistical workloads we used

were K-Means and logistic regression. The data set of K-

Means had 2 million data points, each of which had 256 or

1024 features. The number of centers was 2048. The data set

of logistic regression had 2 million data points. each of which

had 512 or 1024 features. The GPU version of K-Means and

logistic regression were implemented based on GPU-RDD. We

set the scale factor to 50 2 for both Star Schema Benchmark

and TPC-H benchmark in the experiments.

In the experiments, all the workload’s data were initially

cached in the cluster memory. We run each experiments 5

times and report the median results.

B. Effectiveness of GPU Sharing

We first evaluate the effectiveness of GPU sharing in Spark-

GPU. For each workload, we measured its performance on

Spark-GPU when 1, 2, 4, and 8 tasks can be executed

concurrently on a GPU respectively. We used the performance

when one task can be executed on a GPU as baseline and

normalized all other performance to the baseline.

Figure 6 presents the results of workloads from each cat-

egory representing the following workload types: compute-

intensive workload (K-Means-1024 and LR-1024), shuffle-

intensive query (TPC-H-Q3) and shuffle-rare query (SSB-

Q3.1). The workload details will be discussed later when we

study Spark-GPU’s performance. We observe that only shuffle-

rare query can significantly benefit from sharing GPUs.The

performance is improved by up to 1.61x. The improvements

of other workloads are mediocre. The reason is that the

benefits of sharing GPUs mainly come from overlapping the

2Scale factor denotes the size of data set in the benchmark

8

 0

 0.5

 1

 1.5

 2

 2.5

K-Means-1024

LR-1024

SSB-Q3.1

TPCH-Q3

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

1-task
2-tasks
4-tasks
8-tasks

Fig. 6: Effectiveness of GPU sharing in Spark-GPU

current GPU kernel execution with the PCIe data transfer for

subsequent GPU tasks. This is consistent with our analysis in

Section V.

Another observation is that sharing GPU between two tasks

is better than other choices. This illustrates that although

sharing GPUs can overlap operations to improve performance,

over subscribing can incur resource contention and degrade the

performance to some extent.

C. Effectiveness of Spark-GPU

We next examine Spark-GPU’s designs by comparing its

performance with that of Spark. In these experiments, a GPU

was shared between two tasks in Spark-GPU to give the best

performance.

Note that there also exist research works on using GPUs

in Spark for machine learning workloads (e.g., HeteroSpark

[27]). We don’t compare Spark-GPU with them because: (1)

their codes are not available; and (2) they are not general-

purpose systems as Spark-GPU does.

1) Data Mining: K-Means is a widely used clustering

algorithm. We implemented it on both Spark and Spark-

GPU to study the performance. The algorithm mainly contains

two step: (1) finding the closest center for each data point

and (2) update the cluster centers. When implementing the

algorithm on Spark-GPU, we first created a GPU-RDD that

stored data in columnar format in one continuous region in

the native memory. Note that only one GPU memory copy

command was needed for each partition of the data points and

coalesced GPU memory accesses can be guaranteed. Then we

conducted computation on the GPU-RDD. For each iteration

of computation, we offloaded the operation of calculating the

closest center to GPUs. A GPU kernel was launched to find the

closest center for each data point in one partition and aggregate

on the centers locally. After that, a global aggregation was

performed to update the centers.

Figure 7 shows the performance result. Spark-GPU signif-

icantly outperformed Spark for K-Means workloads. When

data points had 256 and 1024 features, Spark-GPU improved

the performance by 5.71x and 3.84x respectively. The perfor-

mance was improved because of K-Means’s compute-intensive

nature. K-Means only shuffles centers in each iteration. The

dominant operation is finding the closest centers, which can

benefit significantly from GPU’s high memory bandwidth and

high parallelism.

2) Statistical Analysis: Logistic regression is a commonly

used classification method in statistical analysis. The algorithm

 0

 20

 40

 60

 80

 100

 120

 140

256 1024

E
xe

cu
tio

n
tim

e
(s

)

Number of Features

Spark-GPU
Spark

Fig. 7: Results of executing one iteration of K-Means on Spark

and Spark-GPU when data have 256 and 1024 features.

 0

 20

 40

 60

 80

 100

 120

512 1024

E
xe

cu
tio

n
tim

e
(s

)

Number of Features

Spark-GPU
Spark

Fig. 8: Performance results of executing one iteration of

logistic regression on Spark and Spark-GPU when data have

512 and 1024 features.

finds a value v that can best separate a data set. In each

iteration of computation, a logistic function is applied to every

data point in the data set. Then all the results are aggregated

to update v. When implementing on Spark-GPU, each data

partition was first calculated a local v on GPUs. After that,

Spark-GPU aggregated all local values to update v. Similar

to K-Means, we stored all data points in columnar format in

one continuous memory region, which reduced the overhead

of transferring the data points to GPU device memory and

increased the GPU kernel performance. The performance

results are shown in Figure 8.

Logistic regression’s performance trend is similar to that of

K-Means. Spark-GPU significantly improved the performance.

When data had 512 and 1024 features, the performance were

improved by 16.13x and 13.73x. The reason for Spark-GPU’s

better performance is that logistic regression is bounded by

calculations on each data point, which can benefit from GPU’s

high computation powers.

3) Star Schema Benchmark: Star Schema Benchmark

(SSBM) [30] evaluates the performance of decision support

systems. It has 13 queries, divided into 4 query flights. All

queries operate on 4 tables: one fact table lineorder and four

dimension tables date, part, supplier and customer. Spark-

GPU can execute all queries from Star Schema Benchmark.

To fairly compare the performance of Spark-GPU and

Spark, we manually chose the best query execution plan for

each SSBM query when running on Spark. Figure 9 shows the

performance results of SSBM queries when running on Spark-

GPU and Spark. As can seen, Spark-GPU outperformed Spark

for using GPUs. The performance improvements were between

1.92x and 4.83x. We use query 3.1 from the benchmark to as

an example to illustrate Spark-GPU’s performance behaviors.

9

 0

 1

 2

 3

 4

 5

 6

 7

 8

Q1.1
Q1.2

Q1.3
Q2.1

Q2.2
Q2.3

Q3.1
Q3.2

Q3.3
Q3.4

Q4.1
Q4.2

Q4.3

E
xe

cu
tio

n
tim

e
(s

)

Spark-GPU
Spark

Fig. 9: The performance results of Star Schema Benchmark

when executed on Spark and Spark-GPU.

Fig. 10: The physical execution plan of SSB 3.1. The shaded

operators were executed with GPU query operators.

SSB query 3.1:
SELECT c_nation,s_nation,

d_year,sum(lo_revenue) as revenue
FROM lineorder,customer, supplier,date
WHERE lo_custkey = c_custkey

and lo_suppkey = s_suppkey
and lo_orderdate = d_datekey
and c_region = ’ASIA’
and s_region = ’ASIA’
and d_year >=1992 and d_year <= 1997

GROUP BY c_nation,s_nation,d_year
ORDER BY d_year asc,revenue desc

Query 3.1 joins three dimensional tables with the fact

table, and then groups and sorts the result. Figure 10 shows

query 3.1’s physical execution plan. Since all dimension tables

are much smaller than the fact table, the best way to execute

the joins are using broadcast joins. When running on Spark-

GPU, all the scans, joins and partial aggregation are executed

using GPU operators. The overall join selectivity of query 3.1

is 3.4%. Thus the three broadcast joins dominate the total exe-

cution time, which can benefit significantly from using GPUs.

Moreover, Spark-GPU can directly work on the columnar data

in the native memory from the fact table lineorder without

converting the data back to rows for consecutive broadcast join

operations, which reduces the overhead of block processing

and maximize GPU’s performance.

Other SSBM queries have similar patterns as query 3.1.

Their execution time are also dominated by operations on fact

table lineorder, which can be accelerated by using GPUs.

4) TPC-H Benchmark: TPC-H benchmark [5] is another

benchmark to evaluate the performance of decision support

 0

 10

 20

 30

 40

 50

Q1 Q3 Q6 Q10

E
xe

cu
tio

n
tim

e
(s

)

Spark-GPU
Spark

Fig. 11: The performance results of 4 TPC-H queries when

running on Spark and Spark-GPU.

systems. It has a snowflake schema and 22 queries, which have

more complex behaviors than SSBM queries. Currently not all

query features (e.g. nested queries, case clause) from TPC-H

can be executed on Spark-GPU. In this case, these queries

will be executed on CPUs in the same way for Spark-GPU

and Spark. It is our future work to support these features on

Spark-GPU. In the experiments we compared the performance

of 4 TPC-H queries and the results are shown in Figure 11.

As can seen, Spark-GPU improved the performance for all

4 TPC-H queries. The performance of query 1 and query 6

were improved by 4.32x and 3.15x, while the performance of

query 3 and query 10 were only improved by 1.23x and 1.31x.

Query 1 and 6 have query similar query patterns as SSBM

queries. On the other hand, query 3 and 10 are different. We

use query 3 to explain the performance differences.

TPC-H query 3:
SELECT l_orderkey,o_orderdate, o_shippriority,
sum(l_extendedprice * (1-l_discount)) as revenue

FROM orders, customer, lineitem
WHERE c_mktsegment = ’MACHINERY’

and c_custkey = o_custkey
and o_orderdate < ’1995-03-26’
and l_shipdate > ’1995-03-26’

GROUP BY l_orderkey, o_orderdate, o_shippriority
ORDER BY revenue desc, orderdate

Query 3 joins three tables orders, customer and lineitem,

and then groups and sorts join results. Different from SSBM,

none of these tables are small enough for broadcast joins,

thus shuffle join (e.g hash join and sort merge join) was

used. Figure12 shows query 3’s physical execution plan.

When executed on Spark-GPU, joins and the aggregation were

executed with GPU query operators. The scans were executed

on CPUs based on Spark-GPU’s query optimizer.

Shuffle joins shuffle data from both tables, which include

I/O operations such as serializing data to local disks before

data shuffling and deserializing the data from the disks before

join actually happens. These I/O operations dominate the

execution time of query 3 and thus the overall performance

cannot be accelerated by GPUs. This indicates that shuffle-

intensive queries should be executed on CPUs to save GPUs

for more suitable workloads, unless the I/O performance is

significantly improved in the future.

D. A Case for Spark-GPU

Spark-GPU provides both high-level SQL interface and low-

level procedural programming interface to support different

data analytics applications. While SQL applications can trans-

parently benefit from GPUs, other applications need user’s

10

Fig. 12: The physical execution plan of TPC-H query 3. The

shaded operators were executed with GPU query operators.

efforts to write GPU kernels if they want to use GPUs. Since

Spark already has several built-in libraries to run data analytics

applications such as machine learning, one question that has

not been answered is whether these legacy codes easily utilize

GPUs without significant changes. A straightforward way to

achieve this is to parallelize all existing Spark RDD operations

on GPUs such that applications built on top of RDDs can

automatically utilize GPUs. However, this approach cannot

guarantee high performance. In fact, it performs even worse

than the original Spark based on our preliminary results.

The reason is that RDD doesn’t have semantic information

about the applications, which causes unnecessary data copying

operations between Java heap memory and native memory,

and uncoalesced GPU memory accesses when using GPUs.

In this paper, we make a strong case for the design and im-

plementation of Spark-GPU that is an effective methodology

to integrate GPUs into existing in-memory data processing

systems.

VII. RELATED WORK

The Graphics Processor Unit (GPU) has become a general

purpose computing device because of its high performance.

In the past decade, the research community has conducted

extensive work on how to use the GPU to accelerate various

data parallel operations.

In the relational database, GPU has been used to accelerate

both database operators and complex analytic queries. The per-

formance of sort [13], [34], join [18], [24] and aggregation [25]

have been improved significantly with optimized algorithms

when running the GPU. Complex queries can benefit from

using the GPU with various software optimizations [17], [39],

[38]. These works demonstrate the performance potential for

using GPUs to process SQL queries.

With GPU’s superior performance for data parallel appli-

cations, researchers have investigated how to use GPUs in

MapReduce systems. Mars [16] designed a MapReduce-like

system Mars on a single node GPU. Mars implemented a set

of interfaces such as Map and Reduce on the GPU, which

could be used to implement various analytic applications on

the GPU. Stuart et al. [35] proposed GPRM, a MapReduce-like

GPU framework that accepts user-implemented GPU kernels

for Map and Reduce operations and runs them on a GPU

cluster. El-Helw et al. [11] designed a MapReduce framework

Glasswing using OpenCL that can exploit various computing

devices and overlap operations such as computation and com-

munication. He et al. [19] proposed the Hadoop+ system that

can execute applications both CPUs and GPUs in a Hadoop

cluster. They focused on the resource contention between CPU

tasks and GPUs and proposed a model to help allocate GPU

resources. These MapReduce-like GPU systems improved the

performance of various workloads, which demonstrates GPU’s

performance potential for MapReduce systems.

HeteroSpark [27] is a framework that supports executing

certain machine learning workloads on Spark with GPUs.

It uses Java RMI to transfer data between a CPU’s JVM

and a GPU’s JVM, which can incur expensive overhead (e.g.

serialization and deserialization of the data) and compromise

the system’s fault tolerance ability. Spark-GPU doesn’t intro-

duce any extra communication between cluster nodes and has

minimized data movements when using GPUs.

VIII. CONCLUSION

In this work we have explored how to improve the per-

formance of production-level, CPU-optimized distributed in-

memory data processing systems with GPUs. We have pre-

sented the design of Spark-GPU, a CPU-GPU hybrid system

built on top of Apache Spark that can exploit GPUs in the most

efficient way. Spark-GPU has addressed a set of real-world

challenges incurred by the mismatches between Spark and

GPUs. We have comprehensively examined the performance

of Spark-GPU with representative data analytics workloads.

Our work has the following conclusions: (1) Spark-GPU can

accelerate various data analytics workloads, but non-trivial

engineering efforts are needed to address critical mismatches

between Spark’s Java-based network-centric execution model

and GPU’s unique architecture and programming model; (2)

Spark-GPU provides speedups at a certain level (up to 4.83x)

for traditional data warehousing workloads (represented by

TPC-H queries and Star Schema Benchmark queries). GPU’s

performance advantages are significantly impacted by data

shuffling in query execution; (3) Spark-GPU can significantly

accelerate compute-intensive data mining and statistics analy-

sis applications (up to 16.13x), represented by the K-means

clustering and Logistics Regression algorithms. Spark-GPU

represents an effective methodology to build an accelerated

in-memory data processing engine on clusters.

IX. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive

comments. The work was supported in part by the Na-

tional Science Foundation under grants OCI-1147522, CNS-

1162165, and CCF-1513944.

REFERENCES

[1] Apache Hadoop. https://hadoop.apache.org/.
[2] Apache Spark. http://spark.apache.org/.
[3] CUDA C programming guide. http://docs.nvidia.com/cuda/pdf/CUDA

C Programming Guide.pdf.

11

[4] The OpenCL specification v2.0. https://www.khronos.org/registry/cl/
specs/opencl-2.0.pdf.

[5] TPC-H. http://www.tpc.org/tpch/.
[6] R. Appuswamy, C. Gkantsidis, D. Narayanan, O. Hodson, and A. Row-

stron. Scale-up vs scale-out for hadoop: Time to rethink? In Proceedings

of the 4th Annual Symposium on Cloud Computing, SOCC ’13, pages
20:1–20:13, New York, NY, USA, 2013. ACM.

[7] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia. Spark
sql: Relational data processing in spark. In Proceedings of the 2015 ACM

SIGMOD International Conference on Management of Data, SIGMOD
’15, pages 1383–1394, New York, NY, USA, 2015. ACM.

[8] S. Blanas, Y. Li, and J. M. Patel. Design and evaluation of main memory
hash join algorithms for multi-core cpus. In Proceedings of the ACM

SIGMOD International Conference on Management of Data, SIGMOD

2011, Athens, Greece, June 12-16, 2011, pages 37–48, 2011.
[9] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew.

Deep learning with cots hpc systems. In S. Dasgupta and D. Mcallester,
editors, Proceedings of the 30th International Conference on Machine

Learning (ICML-13), volume 28, pages 1337–1345. JMLR Workshop
and Conference Proceedings, May 2013.

[10] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. In Proceedings of the 6th Conference on Symposium

on Opearting Systems Design & Implementation - Volume 6, OSDI’04,
pages 10–10, Berkeley, CA, USA, 2004. USENIX Association.

[11] I. El-Helw, R. Hofman, and H. E. Bal. Scaling mapreduce vertically
and horizontally. In Proceedings of the International Conference for

High Performance Computing, Networking, Storage and Analysis, SC
’14, pages 525–535, Piscataway, NJ, USA, 2014. IEEE Press.

[12] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and
I. Stoica. Graphx: Graph processing in a distributed dataflow framework.
In Proceedings of the 11th USENIX Conference on Operating Systems

Design and Implementation, OSDI’14, pages 599–613, Berkeley, CA,
USA, 2014. USENIX Association.

[13] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha. Gputerasort:
High performance graphics co-processor sorting for large database
management. In Proceedings of the 2006 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’06, pages 325–336,
New York, NY, USA, 2006. ACM.

[14] G. Graefe and W. J. McKenna. The volcano optimizer generator: Exten-
sibility and efficient search. In Proceedings of the Ninth International

Conference on Data Engineering, pages 209–218, Washington, DC,
USA, 1993. IEEE Computer Society.

[15] P. Harish and P. J. Narayanan. Accelerating large graph algorithms on
the gpu using cuda. In Proceedings of the 14th International Conference

on High Performance Computing, HiPC’07, pages 197–208, Berlin,
Heidelberg, 2007. Springer-Verlag.

[16] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. Mars:
A mapreduce framework on graphics processors. In Proceedings

of the 17th International Conference on Parallel Architectures and

Compilation Techniques, PACT ’08, pages 260–269, New York, NY,
USA, 2008. ACM.

[17] B. He, M. Liu, K. Yang, R. Fang, N. Govindaraju, Q. Luo, and
P. Sander. Relational query coprocessing on graphics processors. ACM

Transactions on Database Systems, 34(4), December 2009.
[18] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo, and P. Sander.

Relational joins on graphics processors. In Proceedings of the 2008 ACM

SIGMOD International Conference on Management of Data, SIGMOD
’08, pages 511–524, New York, NY, USA, 2008. ACM.

[19] W. He, H. Cui, B. Lu, J. Zhao, S. Li, G. Ruan, J. Xue, X. Feng, W. Yang,
and Y. Yan. Hadoop+: Modeling and evaluating the heterogeneity for
mapreduce applications in heterogeneous clusters. In Proceedings of

the 29th ACM on International Conference on Supercomputing, ICS
’15, pages 143–153, New York, NY, USA, 2015. ACM.

[20] T. H. Hetherington, M. O’Connor, and T. M. Aamodt. Memcachedgpu:
Scaling-up scale-out key-value stores. In Proceedings of the Sixth ACM

Symposium on Cloud Computing, SoCC ’15, pages 43–57, New York,
NY, USA, 2015. ACM.

[21] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica. Mesos: A platform for fine-
grained resource sharing in the data center. In Proceedings of the 8th

USENIX Conference on Networked Systems Design and Implementation,
NSDI’11, pages 295–308, Berkeley, CA, USA, 2011. USENIX Associ-
ation.

[22] Y. Huai, A. Chauhan, A. Gates, G. Hagleitner, E. N. Hanson,
O. O’Malley, J. Pandey, Y. Yuan, R. Lee, and X. Zhang. Major technical
advancements in apache hive. In Proceedings of the 2014 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’14, pages
1235–1246, New York, NY, USA, 2014. ACM.

[23] F. Ji, H. Lin, and X. Ma. Rsvm: A region-based software virtual
memory for gpu. In Proceedings of the 22Nd International Conference

on Parallel Architectures and Compilation Techniques, PACT ’13, pages
269–278, Piscataway, NJ, USA, 2013. IEEE Press.

[24] T. Kaldewey, G. Lohman, R. Mueller, and P. Volk. Gpu join processing
revisited. In Proceedings of the Eighth International Workshop on Data

Management on New Hardware, DaMoN ’12, pages 55–62, New York,
NY, USA, 2012. ACM.

[25] T. Karnagel, R. Mueller, and G. Lohman. Optimizing gpu-accelerated
group-by and aggregation. 2015.

[26] R. Lee, X. Ding, F. Chen, Q. Lu, and X. Zhang. Mcc-db: Minimizing
cache conflicts in multi-core processors for databases. Proc. VLDB

Endow., 2(1):373–384, Aug. 2009.
[27] P. Li, Y. Luo, N. Zhang, and Y. Cao. Heterospark: A heterogeneous

CPU/GPU spark platform for machine learning algorithms. In 10th IEEE

International Conference on Networking, Architecture and Storage, NAS

2015, Boston, MA, USA, August 6-7, 2015, pages 347–348. IEEE, 2015.
[28] T. Luo, R. Lee, M. Mesnier, F. Chen, and X. Zhang. hstorage-db:

Heterogeneity-aware data management to exploit the full capability of
hybrid storage systems. Proc. VLDB Endow., 5(10):1076–1087, June
2012.

[29] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin:
A not-so-foreign language for data processing. In Proceedings of the

2008 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’08, pages 1099–1110, New York, NY, USA, 2008. ACM.

[30] P. O’Neil, E. O’Neil, X. Chen, and S. Revilak. Star schema benchmark.
http://www.cs.umb.edu/∼poneil/StarSchemaB.PDF.

[31] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun.
Making sense of performance in data analytics frameworks. In Proceed-

ings of the 12th USENIX Conference on Networked Systems Design and

Implementation, NSDI’15, pages 293–307, Berkeley, CA, USA, 2015.
USENIX Association.

[32] S. Padmanabhan, T. Malkemus, R. C. Agarwal, and A. Jhingran. Block
oriented processing of relational database operations in modern com-
puter architectures. In Proceedings of the 17th International Conference

on Data Engineering, pages 567–574, Washington, DC, USA, 2001.
IEEE Computer Society.

[33] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan. Improving gpgpu
concurrency with elastic kernels. SIGPLAN Not., 48(4):407–418, Mar.
2013.

[34] N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W. Lee, D. Kim, and
P. Dubey. Fast sort on cpus and gpus: A case for bandwidth oblivious
simd sort. In Proceedings of the 2010 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’10, pages 351–362,
New York, NY, USA, 2010. ACM.

[35] J. A. Stuart and J. D. Owens. Multi-gpu mapreduce on gpu clusters.
In Proceedings of the 2011 IEEE International Parallel & Distributed

Processing Symposium, IPDPS ’11, pages 1068–1079, Washington, DC,
USA, 2011. IEEE Computer Society.

[36] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler. Apache hadoop
yarn: Yet another resource negotiator. In Proceedings of the 4th Annual

Symposium on Cloud Computing, SOCC ’13, pages 5:1–5:16, New York,
NY, USA, 2013. ACM.

[37] K. Wang, X. Ding, R. Lee, S. Kato, and X. Zhang. Gdm: Device memory
management for gpgpu computing. SIGMETRICS Perform. Eval. Rev.,
42(1):533–545, June 2014.

[38] K. Wang, K. Zhang, Y. Yuan, S. Ma, R. Lee, X. Ding, and X. Zhang.
Concurrent analytical query processing with gpus. Proc. VLDB Endow.,
7(11):1011–1022, July 2014.

[39] Y. Yuan, R. Lee, and X. Zhang. The yin and yang of processing data
warehousing queries on gpu devices. Proc. VLDB Endow., 6(10):817–
828, Aug. 2013.

[40] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing. In Pro-

ceedings of the 9th USENIX Conference on Networked Systems Design

and Implementation, NSDI’12, pages 2–2, Berkeley, CA, USA, 2012.
USENIX Association.

[41] K. Zhang, K. Wang, Y. Yuan, L. Guo, R. Lee, and X. Zhang. Mega-kv:
A case for gpus to maximize the throughput of in-memory key-value
stores. Proc. VLDB Endow., 8(11):1226–1237, July 2015.

