2017 IEEE 33rd International Conference on Data Engineering

Feisu: Fast Query Execution over Heterogeneous
Data Sources on Large-Scale Clusters

An Qin*, Yuan Yuan, Dai Tan*, Pengyu Sun*, Xiang Zhang*, Hao Cao*, Rubao Leef, Xiaodong ZhangT
*Baidu, Inc, {qinan, tandai02, sunpengyu, zhangxiang02, cachao} @baidu.com
TThe Ohio State University, {yuanyu, liru, zhang} @cse.ohio-state.edu

Abstract—Fast data analytics at an increasingly large scale
has become a critical task in any Internet service company.
For example, in Baidu, the major search engine company in
China, large volumes of Web and business data in PB-scale are
timely and constantly acquired and analyzed for the purposes
of evaluating product revenue, tracking product demanding
activities on market, predicting user behavior, upgrading product
rankings, and diagnosing spam cases, and many others. Response
time for queries of various data analytics not only affects user
experiences, but also has a serious impact on productivity of
business operations.

In this paper, to meet the challenge of fast data analytics, we
present Feisu (meaning fast in Chinese), a data integration system
over heterogeneous storage systems, which has been widely used
in Baidu’s critical and daily business analytics applications after
our R&D efforts. Feisu is designed and implemented to co-work
together with several heterogeneous storage systems, and exploit
the query similarity embedded in complex query workloads. Our
experiments using real world workloads show that Feisu can
significantly improve query performance in Baidu. Feisu has been
in production use in Baidu for two years to effectively manage
over dozens of petabytes of data for various applications.

I. INTRODUCTION

In the big data era, it is a challenging and timely task to
support various interactive data analytics jobs over increasingly
large scale data sets that are archived and managed by different
types of storage systems. The search engine of Baidu [1], the
leading Chinese online Web service provider serving billions
of users, is such a system platform to address these challenges
in its daily operations. A large number of Baidu services,
such as Web search, map and navigation, cloud service and
online encyclopedia, require fast accesses over huge amounts
of data sets. In practice, strategy engineers need to quickly
model new product ideas, diagnose and optimize their models
based on information sources collected from multiple systems;
data engineers periodically query dozens of terabytes of user
business log data to produce statistical reports; system engi-
neers have to figure out malfunctions hidden in the search
engine in petabytes-scale data sets. Processing various types
of interactive data analysis jobs in such a complex environment
in an efficient way has become increasingly demanding.

In the Baidu search engine, data sets are generated from a
variety of sources and managed by different business-specific
storage systems (e.g., local files system, HDFS [2] and cold-
data distributed filesystem [3]). An interactive data analytics
task may access data sources from all these systems, but cannot
affect the service quality of any business application running
on top of these systems. For this reason, it is unrealistic for
Baidu to adopt commonly used systems of general purposes,

2375-026X/17 $31.00 © 2017 IEEE
DOI 10.1109/ICDE.2017.162

1173

Web
Search

Scholar
Search

Music
Search

Encyclo-
pedia

Map ‘D Online Services

’ Query Processor ‘

Business Systems

Crawler Indexer Ranking

‘ ’ Paddle

=]

Fig. 1: Baidu’s software stack

Feisu
‘ Infrastructure

Systems

Local FS‘ ’ Fatman

such as Hadoop [4], Apache Hive [5], Apache Spark [6], and
Apache Impala [7] to process these tasks.

To make interactive data analytics tasks highly efficient
in large scale and heterogeneous cluster systems, we have
designed and implemented Feisu, a columnar data processing
system that is optimized for geo-distributed storage systems.
Feisu handles the geographical distribution via the cross-
domain mechanism to share the data schema and access rights.
It organizes data sets into partitions using a compression-
friendly columnar format. To speedup ad-hoc queries, Feisu
introduces an effective adaptive indexing mechanism, called
SmartIndex, which utilizes query similarity behind our inter-
nal user’s behaviors. SmartIndex can effectively reduce data
retrieval time without affecting the service quality of different
storage systems.

Feisu has been in production use in Baidu for two years,
supporting more than one hundred products. Figure 1 illus-
trates Feisu’s position in the Baidu’s software stack. From
rapid product prototyping to revenue reporting, from deep
learning model training to system malfunction debugging,
Feisu has significantly improved the efficiency of data explo-
ration and supports a large number of products. Now more
than fifteen thousand of Feisu instances have been deployed
across six data centers, serving five thousands of queries on
average every day. The total size of data managed by Feisu
has reached dozens of petabytes.

In general, we have made the following contributions in
this paper:

e We show the necessity to build an independent data
processing system over heterogeneous data sources,
such as Feisu.

e We identify query locality and similarity based on

analysis of query characteristics in Baidu, which can
be used to significantly improve query performance.

IEEE
computer
® psouety

We present the detailed design and implementation of
Feisu, a parallel columnar data processing system with
an adaptive indexing mechanism over heterogeneous
storage systems.

We evaluate Feisu with real-world workloads and
illustrate our experiences in building Feisu, which
would shed some light on data management systems
on large clusters.

The rest of the paper is organized as follows. Section II
explains Baidu’s data heterogeneity and the motivation of
Feisu. Section III presents the overall design of Feisu. Sec-
tion IV describes Feisu’s optimizations based on our analysis
of user logs. After describing implementation issues in building
Feisu in Section V, We evaluate the performance of Feisu
in Section VI. Section VIII introduces the related work and
Section IX concludes the work.

II. BAIDU’S REQUIREMENTS IN DISTRIBUTED DATA

INTEGRATION

In Baidu, data are generated from a variety of sources (see
the pipeline of web data processing in Figure 2), which can
be categorized into the following three types.

e Log data, which include user activity logs and system
running logs, are generated on tens of thousands of

online service machines.

Business data, which include web links, web pages,
and indices (web page’s digest, index and inverted in-
dex), are generated by offline processes cross different
clusters.

Labeled data, generated by engineers for model train-
ing or other tasks, such as ranking enhancement or
bad case intervention.

These data are usually stored on different storage systems
in Baidu. Log data are stored in the local file systems of
the online machines; business data are mainly stored in the
global file systems (e.g., HDFS); and labeled data can be stored
in key-value stores or Baidu’s internal distributed file system
Fatman [3]. Many data analytics tasks need to access data from
these storage systems. We use the following three application
cases in Baidu to illustrate the characteristics of these tasks
and motivate our work.

Case I: Debugging search engine.

Debugging search engine is a common but challenging task
for system engineers to find and solve problems (e.g., ineffi-
cient designs, data inconsistency issues and etc.) in Baidu’s
system stack. Usually engineers need to access data that may
be placed in multiple data sources such as local filesystems and
standalone distributed filesystems to find the the root cause of
a problem. The process is expensive and error-prone because
engineers must learn and understand the complex data flows
involving different storage systems. Data inconsistency and
schema mismatching can happen across storage systems, which
significantly delays the engineers from giving insights.

Case 2: Rapid product prototyping.

Rapid product prototyping is important for testing new
ideas and launching new products. Before Feisu, a large portion

1174

of product engineers’ time is spent on preparing data sets
from several application storage systems. They have to learn
the interfaces of these storage systems and collaborate with
system engineers to figure out the necessary data sets to use for
product prototyping. One-round of the data preparation process
would cost almost one week. Product prototyping usually takes
multiple rounds of data preparation and evaluation no matter
whether the new product is finally proved to be launched.
For example, in our design of voice search product, we need
to evaluate the benefited user domain so we have to extract
the user behavior data again and again to demarcate the
specific user set. Moreover, data freshness is very important for
new product research and development. The delay of product
prototyping caused by the complexity of different storage
systems can result in business losses.

Case 3: Product Analysis.

Product analysis is critical to figure out the user and
business trends for our products. Some analysis tasks need to
process past one-or-two years of data to analyze the industry
tendency or to analyze specific product activities. In this case,
historical data stored in cold storage will be loaded together
with the latest data for computation. It is also common for
engineers to periodically analyze sampled hot data to check
the indicators in a revenue report. These tasks access different
storage systems and have different performance requirements.

A straightforward approach to solve the problems is to
deploy one global file system (e.g., HDFS) to manage these
data or loading the data from different storage systems into one
storage system and then run standard data processing engines
such as Hadoop and Spark for data analytics. However, this
approach doesn’t work for Baidu.

Deploying one global file system (e.g., HDFS) to manage
all data is impossible in Baidu because of the different service
requirements for different applications. For example, log data
are stored on online service machines, which run legacy
retrieval service for Baidu search engine. The retrieval service
is critical to the search engine and thus other heavy services
such as global file system cannot co-run on the same nodes.

It is also impossible to load the data from these different
storage systems to one global file system for data analytics
due to the high cost of storage and network data transferring,
which is caused by two facts: (1) Internet search engine is
usually geo-distributed; and (2) data are generated in a high
speed in Baidu (e.g., 2.3 GB log data per hour per node).
Collecting the data into one storage system will consume large
amounts of network resources, which can severely affect the
business service traffic in hot regions. This approach is also
inefficient because analytic tasks cannot access the data in a
timely manner to generate product insights, which may block
fast product development [8].

As a result, we need to develop a new data processing
system that efficiently manage and query all the data to meet
Baidu’s needs. There are two major requirements for the new
system. First, the system needs to consider data heterogeneity
and different service level requirements when accessing the
data on different storage systems. Each storage system works
in an independent domain. Data on different systems have
different storage layouts, and cannot be shared among systems.
The new system must efficiently track the data information

f

Rapid Prototyping / Debugging / Case Tracking / System Diagnose

H Revenue Report ‘

)

Applications

)

’ Anti-Spam / Page Quality ‘ ’

R

Product Analysis

anking Model Training ‘

4

[= |1

1

""""""" Log Data Archival Data
Heterogeneous Link Page Index Label Label | i
Storage Storage Storage Storage || storage | | storage | | |[Local Fs‘ < |Local FS‘ Fatman
Strategies Log
) uer
Crawler Indexer —>| Ranking Query
Link Page Index Processor

Web Users

Fig. 2: Data pipeline in Baidu’s search engine

across different storage systems. Second, the system should
execute queries fast enough to meet the business requirements.
We observe that users in Baidu access different types of data
differently, which can help design the data access method on
different systems. For example, for log data, many analytic
applications only need partial information hidden in the data.
In this case, we can design a light weight process running on
these nodes for information extraction.

In the following sections, we will describe our design
of Feisu, a columnar data processing system optimized for
heterogeneous storage systems.

III.

A. Data Model and Query Model

FEISU DESIGN OVERVIEW

Feisu stores data in columnar format, similar to other
high performance data processing engines (e.g., [9], [10]).
The reason is that data in Baidu usually contain hundreds of
attributes but only a small subset of them are actually queried.
Storing data in columnar format can effectively reduce the I/O
cost. Feisu also supports nested data format such as json, which
will be flatten into columns when the data are processed.

Currently Feisu supports star schema like queries in the
following format.

SELECT exprl [[AS]
[aggr_func (expr3)
FROM tablel [, table2, .]

[[INNER| [RIGHT|LEFT] OUTER|CROSS] JOIN
table3 [[AS] table_alias3]

[AND join_cond_N .11

expr_aliasl] [...
WITHIN expri4]

ON join_cond_1
WHERE cond]
GROUP BY (fieldl |
HAVING cond]
ORDER BY fieldll|aliasl
LIMIT n]

aliasl) [...]]

[DESC|ASC] [..

[
[
[
[211
[

’

B. System Architecture

Figure 3 shows the architecture of Feisu. Feisu’s design is
motivated by the architecture of modern web search engine.
As can be seen, Feisu organizes servers in the cluster using
the tree structure. There are three types of servers in the tree,
the master server, the stem server and the leaf server. The
master server is the root of the tree, which accepts ad-hoc

1175

queries from clients and generates optimized query execution
plans using a cost-based approach. It dissects a query plan into
sub-plans based on the information of available stem servers
and dispatch the sub-plans to them. The stem server is the
internal node in the tree. It accepts a sub-query plan from the
master and further dissects the plan to the leaf servers. The leaf
server is the leaf in the tree, which actually executes the query
plan and computes the results. After the results are generated,
they are summarized in a bottom-up way and sent back to the
clients.

Feisu’s tree-structured organization can efficiently utilize
available computing resources. To maximize the performance,
Feisu schedules a query based on data location, the cluster’s
network structure, and the load statistics on the leaf servers.
Feisu always schedules a task to the leaf server that contains
the data if the server are available. If the leaf server is not
available, Feisu will either schedule the task to the available
leaf server that contains the data replica or to an available
server that has a low network transfer overhead based on the
network structure.

To support heterogeneous storage systems, each storage
node in a specific storage system is deployed a light-weight
process, which monitors the storage for newly generated data
(e.g., log data) and converts the data into Feisu in columnar
format when new data arrive. Each storage node acts as a
leaf server in Feisu. To guarantee that Feisu doesn’t affect
the business critical applications on top of the storage system,
Feisu controls the amount of resources that can be used for
query processing on the leaf server. The resources will always
be granted to business-critical applications first.

C. System Implementation

Master. The Feisu’s master is a key service and is built
with the following main components:

e Job manager. Job manager maintains the running
information of user query jobs. When users submit
a query, job manager will analyze query execution
semantics and verify accessed right of specific data
set. If the request is legal, job manager will create an
execution plan based on data partition information and
cluster utilizations. After that, a new job with dozens
of tasks is created. Before the new job is put into a
candidate job queue, job manager tries to reuse other
running job’s task result if tasks are identical.

Client

T 1. Create execution /|E|
plan by user ad-hoc
i [€] [€]
Parallel
Execution Engine Stem Stem 2. Generate scheduling
Server Server plan based on cluster [s]>[s|>[s]> -
I DaOa e
Leaf Leaf Leaf 3. Rewrite subplan
v Server Server Server equivalently based [g] o E
on Smartindex
- 1 1 I ’
T ____________ 4. Drive 10 by 5. Update existing
Col i i i subplan indexes =
_Columnar- o o Iy EH
oriented Storage o] o] [1o] EET
block, idx, block, idx, block, idx, Gl

1

Local Filesystem

Distributed Filesystem

Index Execution

Fig. 3: Feisu’s architecture

Cluster manager. Cluster manager manages runtime
information of workers (i.e. leaf server and stem
server). It communicates with the job manager using
periodic RPC to keep information updated. Feisu does
not adopt systems like Zookeeper [11] for survival
detection because the number of workers is too large
and the workers are geographical distributed.

Job Scheduler. Job Scheduler creates the scheduling
plan for candidate jobs after collecting the information
from job manager and cluster manager. Then candidate
jobs with scheduling plans will be put into an emitting
queue, and tasks will be dispatched to corresponding
workers.

Entry Guard. It is the entry point of whole system,
executing the security checking of access flows and
dispatching the incoming traffics. It is also responsible
for capability protection to avoid malicious attacks.

To support large clusters that contain tens of thousands
of nodes, master components are implemented as services,
communicated via an RPC channel and deployed in standalone
machines. With a large number of workers in the cluster,
the network connection for worker heartbeat will reach the
upper limit of a single machine. Our design of separated
cluster management components can easily solve this issue
by horizontal-scaling the cluster manager. Job manager is
designed in a similar way.

For reliability, components (the primary) are running with
backups, which don’t provide service until the primary ones
crash. The backup components get checkpoint and operations
log from the primary in realtime, so that they will reach the
same running state as the primary. Since the backup ones are
shadows of the primary, they can provide functionalities such
as monitoring running information to reduce the burdens on
the primary.

Stem and Leaf servers. Feisu’s workers can work as both
stem servers and leaf severs, which is determined when the

1176

service starts. Stem servers aggregate task execution results
generated by leaf servers or by other stem servers. The data
flow information is defined in the execution plan, which is sent
to all related workers.

Feisu achieves task fault-tolerance using backup tasks,
which are activated by job scheduler when status update of
a specific task times out or service crash is detected. Feisu
schedules backup tasks considering data locations, response
times, and workloads on candidate workers. To enhance in-
teractive response, user can optionally configure the processed
ratio of total data sets to avoid long-tail influence, or directly
limit the total elapse time of whole query running. If processed
data ratio reaches or response time limitation is elapsed out,
the whole job will abandon the unfinished tasks (including
backup tasks) and return back.

Client. The client-end is a versatile component with plug-
gable framework to support command-line tool, website-based
service, and third-party tools. It has two major functionalities:
query syntax checking and access right verification. Query
syntax checking verifies syntax legitimacy and guides users
to write the proper SQL-like query command. Access right
verification checks user identity, accessed resource right and
quota before submitting a query to the servers. The client-end
also collects user query histories to personalize data indexing
and caching. Differently from the query collection in master
component, collection on the client side is used for SmartIndex
to build private index for specific users or user groups.

Common Storage layer. The common storage layer
provides unified data view for other components. To make
heterogeneous storage systems work together smoothly, all
data files are given full paths with prefix flags to activate
different storage plugins. For example, the file path in Hadoop
filesystem will be “/hdfs/path/to/filename”, and in Fatman
filesystem the path will be “/ffs/path/to/filename”. If a prefix
string can not be recognized, local filesystem is activated by
default. Besides unifying naming, Single-Sign-On (SSO) is im-
plemented to allow cross-domain access all storage systems in
Feisu, by mapping their authentication information to running

job credential.

IV. SYSTEM OPTIMIZATION

In this section we present our optimizations in Feisu based
on the study of a two-month query log traces after Feisu
was deployed in Baidu. We find that queries show an access
pattern of similarities in a short time span. Based on this
discovery, we implement a caching mechanism in Feisu and
design SmartIndex, which utilizes the evaluation results of
query predicates to improve the performance of later queries.

A. Query Similarity and Data Locality

We collected a two-month user query log and analyzed
the query features in the log. We find that in a short time
period: (1) a small set of query columns are likely to be
repeatedly accessed (i.e. data locality); and (2) a small set of
query predicates are likely to be reused (i.e. query similarity).

450 T T T T T
Max-min number range 1

Avg repeated number - =% -

T
400 -
350
300
250
200

150

Number of identical columns

100
50

1

12h 24h 36h 48h 72h

0

3h 6h

Time span on query workload

Fig. 4: Number of accessed identical columns with different
time spans

Data Locality. We split the query log traces based on fixed
time span (e.g., 1-hour, 2-hour) and analyzed the number of
repeated accessed columns in the time span. The results are
shown in Figure 4. As can be seen, there is a small set of
columns that are repeatedly accessed in a given time span.
The number increases when the time span becomes larger. This
indicates that Feisu can cache the hot columns to improve the
query performance.

Query Similarity. Similar to the analysis of data locality,
we also split the query log traces based on fixed time spans and
analyzed the characteristics of query predicates in the log. The
reason is that when executing a query plan, each leaf server
in Feisu only executes a sub-plan. In this case, the evaluation
of query predicates has a significant impact on the data access
performance. In the analysis the predicates are converted to
the conjunctive form. Figure 5 shows the ratio of queries that
have at least one exact same query predicate with different time
spans. As can be seen, in a given time span, a large number of
queries have at least one same query predicate. This indicates
that we can improve Feisu’s performance if the evaluation of
hot query predicates can be optimized.

1177

100

80

60

Ratio (%)

40

20

1
3h

1
6h

!
12h 24h 36h 48h

1 1 1

72h

Time span on query workload

Fig. 5: Ratio of queries that have at least one same query
predicate with different time spans

Data locality and query similarity reflect some representa-
tive access patterns of Feisu users. Human users usually ex-
plore the data in a trial-and-error approach. For example, when
diagnosing bugs, a user is likely to first issue an aggregation
query without query predicates and then add predicates one
by one based on the query results. In this case, same columns
will be repeatedly accessed and query predicates are repeatedly
evaluated.

Next, we describe how we utilize data locality and query
similarity to improve Feisu’s query performance.

B. Data Cache

To utilize data locality, we implement a cache layer in
Feisu’s storage system using SSDs. The SSD cache is managed
using LRU. Currently not all query’s data will be cached. Only
data that may be accessed by critical business applications
can utilize SSDs. We manually set the cache preferences for
different data based on practical knowledge.

The reason is that even if hot columns exist in user queries,
it is very difficult to keep the hot data in SSD cache because
of the large amounts of ad-hoc queries. We evaluated different
cache management methods, all of which incur more than
80% of cache miss rates. Without a manual interference, SSD
resources would not be efficiently used in Feisu.

C. SmartIndex

To utilize query similarity, we design SmartIndex for
efficiently reusing the evaluating results of query predicates.
Each SmartIndex is a 0-1 vector, which stores the evaluation
results of a query predicate. Feisu stores all SmartIndices in
the memory of leaf servers. In this case, the leaf servers can
avoid accessing the data and evaluate the query predicate if a
corresponding SmartIndex exists.

1) Index Format: The Smartlndex is stored in the cor-
responding leaf server’s memory in a format similar to the
bitmap index, as shown in Figure 6. It stores the evaluation
results of a query predicate and meta information of the
corresponding data in Feisu’s storage. Feisu can compress the
index to improve memory efficiency.

Index schema

Block id | Compress type | range | bloom | magic

Op/colname/colvalue/offset| Cond value misc

Fig. 6: The structure of SmartIndex

2) Index Management: Feisu creates a SmartIndex each
time a query predicate is evaluated in a leaf server. Feisu
manages the indices based on the size of the cache memory in
the leaf servers and the time the index has been in the cache
since creation. An index will be deleted from the cache if:
(1) the cache memory is full (by a LRU based approach); or
(2) the index has been in the cache for too long. Current the
Time-To-Live (TTL) for each index is set to 72 hours based
on our experiences.

Feisu also provides interfaces for users to set preferences
and retire strategies on indices to increase the possibility that
they are cached in the memory for better performance. For
example, indices with preferences can remain in the memory
when their TTL expire if the cache memory is not full.

3) Query Execution with Smartlndex : With SmartIndex,
Feisu’s leaf servers will transform the predicates in query
sub-plans into conjunctive forms and check if there exist a
SmartIndex for each data block it will process. If a SmartIndex
exists, the scan of the data block and the evaluation of the
predicate are avoided, which can significantly improve the
throughput. Otherwise the data are read from the storage
system and a new Smartlndex will be created.

Ql: SELECT COUNT (x) FROM T

WHERE (c2 > 0) AND (c2 <= 5)

Figure 7 shows how an aggregation query with two query
predicates is executed on a leaf server when the indices
for both predicates exist. In this case, all computations are
conducted in memory. No scan operation is actually needed.

V. OTHER IMPLEMENTATION ISSUES
A. Authentication and Authorization

Feisu manages heterogeneous storages, each of which is
in an independent storage domain. Each domain has its own
access control and resource management strategy. To grant
Feisu to access data on each storage system, each system must
support Single-Sign-On (SSO) access [12]. Authentication and
Authorization (AA) are offline executed on X509-based certi-
fication system [13][14]. To make the authentication process
transparent, we implement the AA functionalities as standard
PAM plugins in the storage system to quickly support SSO
access [15][16][17]. To guarantee that Feisu doesn’t affect
the service quality of the business application on top of each
storage system, we define a resource consumption agreement
between Feisu and each storage system. Each storage system
must synchronize its agreement to Feisu such that Feisu
doesn’t over-schedule tasks to the storage system.

1178

B. Hardware Resource Utilization Control

Hardware has become increasingly powerful in recent
years, which makes it possible for each machine to serve
more than one application. To increase hardware utilization,
we consolidate servers by deploying multiple containers in
the same sever [18][19]. All containers are generally sched-
uled by our central cluster manager. It is inevitable that
some of low-priority containers have to give up resources
to guarantee the provision of high-priority online services
or for balancing the workload via instance migration. This
affects system throughput and latency, particularly for storage
systems. In this case, Feisu’s design of task scheduling and
fault tolerance must consider the fluctuation and avoids the
temporary unavailability via dynamically communicating (e.g.,
heartbeat) with the cluster manager. Sometimes the cluster
manager may not timely detect server crashes. To reduce the
impact on performance, Feisu communicates with applications
to schedule more resources.

C. Traffic Flow Management

Traffic control is important for Feisu’s performance be-
cause of the large amounts of severs in the cluster. Feisu
divides traffic control into the following three types: control
and state flow, write date flow and read data flow. The first type
is control and state flow, which includes control information
such as cluster-level operation commands and heartbeat. The
control flow has the highest priority because these information
items are used to control the cluster state in Feisu. Besides
the communication priority designed in Feisu system, we also
activate the type-of-service (TOS) flag in switch device to
reserve bandwidth for priority communication. The second
traffic type is write data flow. Although queries on Feisu
are read-only, Feisu still needs to write data (e.g., temporary
data and intermediate results) during query execution. These
written data are transmitted in a bypass channel to a global
distributed storage. The third traffic type is the read data flow
for collecting back the analyzed data. If the data are too big,
it will be dumped to global storage and only the location
information is passed. Read data flow has the lowest priority in
Feisu because the cost of read bandwidth is cheaper than write
flow and re-try mechanism is more acceptable and flexible
when data are stored on persistent storage with replicas.

VI. EVALUATION

A. Experiment Setup

We have measured the experiments on one of online
clusters in Baidu, which contains 4,000 nodes. Each node in
the cluster is equipped with a 4-core 2.4 GHz Xeon processor,
64 GB of memory, four 3-TB SATA disks, and one 500GB
SSD disk. All nodes are connected through 1 Gbps full-duplex
Ethernet. In the experiments, Feisu uses 512 MB of memory
by default to store SmartIndex. The cluster has two HDFS
storage systems managed by Feisu. Each data block in the
storage system has three replicas.

The experiments use three datasets based from real-world
applications, as shown in Table I. Datasets 71 and 72 are from
user business log data with the same schema, carrying URL-
clicked information and query attributes. Dataset 73 is from a
sample set of traced webpage URLs downloaded from Baidu’s

Q1,: Select ... from T
where C2>0andC2<=5

Q1;: Select ... from T
where C2 >0 and !(C2 > 5)

Q1,: Select ... from T
where C2 >0 and !(C2 > 5)

i

b, = {/fs/bi} b; = {/fs/bi} b, = {/fs/bi}
Projection plan Projection plan Projection plan
Filter plan Filter plan Filter plan
C2 >0AND C2<=5 C2 >0 AND !(C2<=5) C2 >0 AND !(C2<=5)

f

Scan plan Scan plan
by: C2 by: C2
Index,
Index,

: €250 0,1,1,0,0 0,1

Cc2>0 0,1,1,0,0 0,1 €250 0,1,1,0,0 0,1 bit-ADD
C2>5 0,0,0,0,0 0,1

C2>5 0,0,0,0,0 0,1 — > (C2<=5 1,1,1,1,1 1,0 ‘

bit-NOT ’ Y4=1 0,1,1,0,0 0,0

Fig. 7: Plan transformation and index calculation during query execution

99.9

T
frequency B2

Percentage (%)

WHERE JOIN GROUPBY ~ ORDERBY ~ WITHIN LIMIT

Fig. 8: Keyword frequency

webpage database. 73’s attributes are a subset of 71’s attributes
and 72’s attributes.

TABLE I: Experimental datasets

Table Number of Uncompressed Number Storage
name records Size of fields
T1 30 billion 62 TB 200 A
T2 130 billion 200 TB 200 B
T3 10 billion 7TB 57 A

We use scan query to evaluate Feisu’s performance. The
reason is that scan queries (including aggregation) are most
frequent in Feisu, based on our analysis of a three-month user
query log, as shown in Figure 8. They occupy more than 99%
of all queries in Feisu and thus it is important to show how
they perform in Feisu.

B. Performance Results

1) Scan Performance on One Storage System: The work-
load we use to evaluate the scan performance is in the
following format.

SELECT a FROM T1
WHERE b OP1 valuel [[AND |
(OP is comparison operator,

OR] ¢ OP2 wvalue2]
or CONTAINS)

1179

We randomly generate the query parameters to run the
query on Feisu. For a comparison, we also implemented B-
tree index in Feisu. The results are shown in Figure 9.

Figure 9(a) shows the query performance with SmartIndex
and without SmartIndex. This demonstrates SmartIndex’s effi-
ciency because query performance improves as more queries
are processed by Feisu. When the number of queries processed
goes above 4,000, the performance is improved by more than
3x compared to the case when Smartlndex is disabled. The
performance improvement comes from SmartIndex’s reduction
of I/O when a query predicate has SmartIndex.

SmartIndex performs differently compared to B-tree index,
as shown in Figure 9(b). The query performance when using
B-tree index remains almost constant as more queries are pro-
cessed by Feisu, but it is not as effective as SmartIndex because
SmartIlndex not only reduces I/O but also the computation
execution time for predicate evaluation.

2) Scan Performance on Multiple Storage Systems: The
scan queries used in these experiments are in the same format
as previous experiments. The only difference is that each scan
query in the current experiments will scan both T2 and T3,
which are stored on different storage systems. Recall that T2’s
attributes are a subset of T3’s attributes.

SELECT a FROM T
WHERE b OP1 valuel [[AND |
(OP is comparison operator,

OR] ¢ OP2 value2]
or CONTAINS)

We randomly generate query parameters to run the query
on Feisu. We measure the averaged scan throughput of each
server in the cluster and the results are shown in Figure 10.

As can be seen, after SmartIndex is enabled, the averaged
throughput on a single server can be improved by up to 1.5x.
This is constant with previous experiments because SmartIndex
can effectively reduce I/O and computation.

3) The Impact of Memory Size on the Performance of
SmartIndex: Feisu’s SmartIndex is stored in the memory of
each leaf server. The memory size on each server used by Feisu
significantly affects the overall throughput. To illustrate the
impact, we use the workload for evaluating scan performance

d 1
. ”:‘zf%‘;@
L
il
SmartIndex disabled —=—
Smanlndex‘ enabled -~ -

Response time (seconds)

Wﬁﬁ%i%ﬁ%wfg%‘% i

0 I
20 40 60 80 100
Query sequence (xlOz)

(a) Performance ith and without SmartIndex

Fig. 9: Scan performance

80
70 F -
60 F T g
soF e E

e

30 - 7

(kilo-records/sec)

20 - 7

1o SmartIndex disabled —— -
) Smalqndex er}abled T

Average scan throughput on single-server

0.1 1 2 3 4 5 6 7 8 9 10

Traning number of Query sequence (x10°)

Fig. 10: Averaged scan throughput of a single server on
different storage systems

on multiple servers and measure its performance when varying
the size of memory on each server used by Feisu. The results
are shown in Figure 11.

As expected, Feisu’s performance increases with the in-
crease of available memory on each server. This is what we
have expected since the more indices be loaded into cache, the
better the performance will be. Another observation we can
obtain is that the performance of Feisu with 512 MB memory
is comparable to that with 2GB memory. This shows the
effectiveness of Feisu’s index management, and Feisu doesn’t
consume too much memory on each server.

C. Scalability

We use the workloads in the previous experiment and
measure its performance using different number of nodes in
the cluster to evaluate Feisu’s scalability. The results are shown
in Figure 12. As can be seen, Feisu’s performance increases
linearly with the number of nodes. This is contributed by
Feisu’s scale-out design and indicates Feisu’s strong scalability.

VII. ONLINE SERVICE IN PRODUCTION SYSTEM

Feisu has been used for large number of data analytics
applications for more than two years. In the earlier period, its
deployment was only on several single clusters with around
five hundreds of machines and several hundreds TB of data
sets. Soon, data sharing among these clusters requires Feisu
to be able to cross-storage data processing. Therefore, the

Wi ‘.wl

" l\h 'H‘ H” MJH‘\M:‘ f’i ["|'|‘R| h Vl\

: ‘ Wﬁ%ﬁﬁ%méﬁ

Response time (seconds)

B-tree ——
SmartIndex - "X’ -

0
20 40 60 80 100

Query sequence (xlOZ)

(b) Comparison of SmartIndex and B-tree
on one storage system

) w B %3
=3 =] S 1=
S =3 3 S
T T T
1 1 1 1

Response time (seconds)

1=
3
1

0 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000

Number of leaf servers

Fig. 12: Response time with different number of nodes

common storage layer is developed to deal with the issue. As
data sets become more and more huge, the response latency
of Feisu engine would be hard to meet user requirement
under the limited resources. Thus, we have encapsulated Feisu
worker in container and elastically launched them in the online
service machine to share their idle CPU and memory resources.
‘When the number of worker reaches more than five thousands,
master’s memory becomes rare resources. Hence, we separated
job manager from master as standalone service to guarantee its
resource provision. One year ago, Feisu was used to analyze
the full log data of whole search service. Data growth requires
more resources put into Feisu to meet the response latency, and
the increasing number of workers continues put new challenges
to Feisu’s architecture. Especially when the worker number
reaches eight thousands, the network overhead of internal
communication (e.g. heartbeat, task dispatch) began affecting
external user experience (job submission, monitoring informa-
tion access, etc.). Feisu’s master was too busy in handling
the internal requests and can not respond to user’s request in
time. So we have to further separate another components of
scheduler and cluster management from master and make each
of them more scalable. Another challenge in full-log analytics
is that data can not be copied to central global file system
because we don’t have such big global filesystem to hold
dozens of petabytes of data. Designing proper protocols to
manage the data location in each disks is a non-trivial task.
Currently Feisu’s protocol only carries the location information
(e.g. , file name, and offset) during computation to narrow
down the data workload. Feisu has already released eight major
versions during the past two years, and has witnessed the above

1180

80

70

60

Miss ratio (%)

1 1 1 1 1 1 1
32MB 64MB 128MB 256MB 512MB 1GB 2GB

Cache size

(a) Miss ratio with different memory size

Fig. 11: The impact of memory

evolution.

Currently, Feisu system has been deployed with about tens
of thousands of workers, managing dozens of petabytes of data
cross mostly product data. The total number of product using
Feisu as data analytics platform is above one hundred. The
number of users has doubled in the past half year.

e Above 150 users access the system in recent half
year averagely. Most of them are doing the rapid
prototyping and product analytics. The total number of
queries in one day can reach six thousands. Compared
to Hadoop MapReduce framework, no training is

needed for users to exploit the data treasure.

More than 93% queries focus on those data sets are
less than 200 TB. And, their response times are always
below 20 seconds. Most of these queries simply focus
on statistic applications by filtering specific columnar
data. It is thus useful to find the similarity in specific
query sequence.

Product iteration productivity has been improved dra-
matically. The product iteration period has been de-
creased from months to days; product analysis time to
figure out problems has reduced from days to hours.

VIII. RELATED WORK

There are a number of recent big data systems devel-
oped for large-scale data analysis running on large clusters.
MapReduce-based systems [20], such as Apache Pig [21],
Apache Hive [22], had been widely used in the Hadoop ecosys-
tem. However, due to high overheads of starting and executing
MapReduce jobs, these MapReduce-based systems are more
suitable for batch processing instead of satisfying the require-
ments of interactive data analysis [10]. Shark [23] and Spark
SQL [24] are recent SQL engines running on Apache Spark
[25], which is a general cluster computing engine optimized
for in-memory computing and iterative algorithms. There are
also other big data analytic systems which do not need a
MapReduce-like general engine [26], such as Dremel [10],
Impala [27], HAWQ [28],Presto [29], and VectorH [30]. These
systems executes SQL queries directly on cluster file systems
(e.g., Hadoop File System) in order to support interactive data
analysis. The major difference between our solution Feisu and
these existing systems is that Feisu is mainly designed for

1181

80

70 -

60

50

40

30

20

Throughput (kilo-records/second)

1 1 1 1 1 1 1
0
32MB 64MB 128MB 256MB 512MB 1GB 2GB

Cache size

(b) Throughput with different memory size

size on Feisu’s performance

the purpose of data integration in order to provide a unified
data view for various developers and engineers in the team of
Baidu search engine. To the best of our knowledge, none of
the above mentioned systems can be directly used to address
our challenges.

Traditional database systems have been extended to pro-
vide data integration functionalities, such as IBM DB2 [31],
Microsoft SQL Server [32], and PostgreSQL [33]. A recent
data integration system is the Data Tamer System [34], which
focuses more on the schema mapping [35] issue across hetero-
geneous data sets. It is unclear whether these data integration
systems can run on a large cluster with thousands nodes, such
as ours in Baidu. More importantly, unlike our solution Feisu,
these systems do not provide execution optimizations based on
query similarity that is an important feature and optimization
opportunity in our scenario. In addition, the request window
technique for data integration [36] exploits the request locality
[37] to combine a group of similar remote queries. Different
from such a batch-processing technique, Feisu exploits the
idea of query result reusing to accelerate executions of similar
queries.

IX. CONCLUSION

Interactive data analysis over heterogeneous data sources
has become important to improve the quality of the Baidu
search engine. Due to the cost of storage and networking,
distributed data sets cannot be collected into a single system in
a conventional warehousing way. A data integration solution
not only requires the ability of handling heterogeneous chal-
lenges in the storage layer, but also needs minimized intervenes
applied to the data sources on which other production work-
loads are co-running. Addressing these challenges, we have
designed and implemented Feisu, a SQL query engine with
columnar storage across heterogeneous storage systems. A key
optimization in Feisu is to exploit the opportunity of query
similarity in user queries and accordingly utilize a SmartIndex
technique to accelerate query executions.

Feisu has been widely used in Baidu’s critical business
running on more than tens of thousands of cluster nodes.
We believe this work also benefits to system researchers and
practitioners on data management in large clusters.

X. ACKNOWLEDGMENTS

We thank the following people: Haifeng Wu and Jianfeng

Zhan gave us valuable suggestions. Ran Zheng and Ketie Cen
directed our integration test in Baidu’s biggest cluster man-
agement system. Zheng Li took change in the online system
operation, and cooperated with Ying Lian and Luming Cai on
the testing framework. The team at The Ohio State University
was supported in part by the National Science Foundation
under grants OCI-114752, CNS-1162165, and CCF-1513944.

[1]
[2]
[3]

[4]
[5]
[6]

[71
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

REFERENCES

“Baidu, inc.” http://www.baidu.com.

“Hadoop distributed filesystem,” http://hadoop.apache.org/docs/stable/
hdfs_design.html.

A. Qin, D. Hu, J. Liu, W. Yang, and D. Tan, “Fatman: Cost-saving and
reliable archival storage based on volunteer resources,” Proceedings of
the VLDB Endowment, vol. 7, no. 13, pp. 1748-1753, 2014.

“Apache hadoop,” http://hadoop.apache.org.
“Apache hive,” https://hive.apache.org.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,”
in Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation, ser. NSDI'12. Berkeley, CA,
USA: USENIX Association, 2012, pp. 2-2. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2228298.2228301

“Apache impala,” http://impala.apache.org.

P. Pedreira, C. Croswhite, and L. Bona, “Cubrick: Indexing millions of

records per second for interactive analytics,” Proceedings of the VLDB
Endowment, vol. 9, no. 13, 2016.

M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil,
A. Rasin, N. Tran, and S. Zdonik, “C-store: A column-oriented dbms,”
in Proceedings of the 3Ist International Conference on Very Large
Data Bases, ser. VLDB ’05. VLDB Endowment, 2005, pp. 553-564.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1083592.1083658

S. Melnik, A. Gubareyv, J. J. Long, G. Romer, S. Shivakumar, M. Tolton,
and T. Vassilakis, “Dremel: interactive analysis of web-scale datasets,”
Proceedings of the VLDB Endowment, vol. 3, no. 1-2, pp. 330-339,
2010.

“Apache zookeeper,” http://zookeeper.apache.org.

A. Pashalidis and C. Mitchell, “A taxonomy of single sign-on systems,”
in Proc. ACISP’03, 2003, pp. 249-257.

F. W. Housley R., Polk W. and D. Solo, “Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile
[RFC 3280],” 2002.

V. Welchl, 1. Foster, C. Kesselman, O. Mulmo, L. Pearlman, S. Tuecke,
J. Gawor, S. Meder, and F. Siebenlist, “X.509 Proxy Certificates for
Dynamic Delegation,” in 3rd Annual PKI R&D Workshop, 2004.

A. Qin, H. Yu, C. Shu, and B. Xu, “Xos-ssh: A lightweight user-centric
tool to support remote execution in virtual organizations,” in Proc. First
USENIX Workshop on Large-Scale Computing (Lasco’07), 2008.

A. Qin, H. Yu, C. Shu, X. Yu, Y. Jegou, and C. Morin, “Operating
system-level virtual organization support in xtreemos,” in Proceedings
of the 9th International Conference on Parallel and Distributed Com-
puting, Applications and Technologies (PDCAT’08), 2008, pp. 234-243.
V. Samar, “Unified login with pluggable authentication modules
(PAM),” Proceedings of the 3rd ACM conference on Computer and
communications security, pp. 1-10, 1996.

S. Soltesz, H. Potzl, M. E. Fiuczynski, A. C. Bavier, and L. L.
Peterson, “Container-based operating system virtualization: a scalable,
high-performance alternative to hypervisors,” in EuroSys’07, 2007, pp.
275-287.

“Kenel cgroups,” http://www.mjmwired.net/kernel/Documentation/cgroups/.

A. Floratou, U. E. Minhas, and E. Ozcan, “Sql-on-hadoop: Full circle
back to shared-nothing database architectures,” Proceedings of the
VLDB Endowment, vol. 7, no. 12, pp. 1295-1306, 2014.

1182

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

A. F. Gates, O. Natkovich, S. Chopra, P. Kamath, S. M. Narayana-
murthy, C. Olston, B. Reed, S. Srinivasan, and U. Srivastava, “Building
a high-level dataflow system on top of map-reduce: the pig experience,”
Proceedings of the VLDB Endowment, vol. 2, no. 2, pp. 1414-1425,
2009.

Y. Huai, A. Chauhan, A. Gates, G. Hagleitner, E. N. Hanson,
0. OMalley, J. Pandey, Y. Yuan, R. Lee, and X. Zhang, “Major technical
advancements in apache hive,” in Proceedings of the 2014 ACM
SIGMOD international conference on Management of data. ACM,
2014, pp. 1235-1246.

R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and
1. Stoica, “Shark: Sql and rich analytics at scale,” in Proceedings of
the 2013 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD *13. New York, NY, USA: ACM, 2013, pp. 13-24.
[Online]. Available: http://doi.acm.org/10.1145/2463676.2465288

M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi et al., “Spark sql:
Relational data processing in spark,” in Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data. ACM,
2015, pp. 1383-1394.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Pro-
ceedings of the 9th USENIX conference on Networked Systems Design
and Implementation. USENIX Association, 2012, pp. 2-2.

J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107-
113, 2008.

M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching, A. Choi,
J. Erickson, M. Grund, D. Hecht, M. Jacobs ef al., “Impala: A modern,
open-source sql engine for hadoop.” in CIDR, 2015.

L. Chang, Z. Wang, T. Ma, L. Jian, L. Ma, A. Goldshuv, L. Lonergan,
J. Cohen, C. Welton, G. Sherry er al., “Hawq: a massively parallel
processing sql engine in hadoop,” in Proceedings of the 2014 ACM
SIGMOD international conference on Management of data. ACM,
2014, pp. 1223-1234.

“Presto query engine.” https://prestodb.io/.

A. Costea, A. Ionescu, B. Riducanu, M. Switakowski, C. Barca,
J. Sompolski, A. Luszczak, M. Szafraiski, G. de Nijs, and P. Boncz,
“Vectorh: Taking sql-on-hadoop to the next level,” in Proceedings
of the 2016 International Conference on Management of Data, ser.
SIGMOD ’16. New York, NY, USA: ACM, 2016, pp. 1105-1117.
[Online]. Available: http://doi.acm.org/10.1145/2882903.2903742

V. Josifovski, P. Schwarz, L. Haas, and E. Lin, “Garlic: A new flavor
of federated query processing for db2,” in Proceedings of the 2002
ACM SIGMOD International Conference on Management of Data,
ser. SIGMOD ’02. New York, NY, USA: ACM, 2002, pp. 524-532.
[Online]. Available: http://doi.acm.org/10.1145/564691.564751

J. A. Blakeley, C. Cunningham, N. Ellis, B. Rathakrishnan, and
M.-C. Wu, “Distributed/heterogeneous query processing in microsoft
sql server,” in 2Ist International Conference on Data Engineering
(ICDE’05). IEEE, 2005, pp. 1001-1012.

R. Lee and M. Zhou, “Extending postgresql to support dis-
tributed/heterogeneous query processing,” in International Conference
on Database Systems for Advanced Applications. Springer, 2007, pp.
1086-1097.

M. Stonebraker, D. Bruckner, I. F. Ilyas, G. Beskales, M. Cherniack,

S. B. Zdonik, A. Pagan, and S. Xu, “Data curation at scale: The data
tamer system.” in CIDR, 2013.

R. J. Miller, L. M. Haas, and M. A. Herndndez, “Schema mapping as
query discovery.” in VLDB, vol. 2000, 2000, pp. 77-88.

R. Lee, M. Zhou, and H. Liao, “Request window: an approach to
improve throughput of rdbms-based data integration system by utilizing
data sharing across concurrent distributed queries,” in Proceedings of
the 33rd international conference on Very large data bases. VLDB
Endowment, 2007, pp. 1219-1230.

R. Lee and Z. Xu, “Exploiting stream request locality to improve
query throughput of a data integration system,” IEEE Transactions on
Computers, vol. 58, no. 10, pp. 1356-1368, 2009.

