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Abstract—LSM-tree has been widely used in data management
production systems for write-intensive workloads. However, as
read and write workloads co-exist under LSM-tree, data accesses
can experience long latency and low throughput due to the
interferences to buffer caching from the compaction, a major and
frequent operation in LSM-tree. After a compaction, the existing
data blocks are reorganized and written to other locations on
disks. As a result, the related data blocks that have been loaded in
the buffer cache are invalidated since their referencing addresses
are changed, causing serious performance degradations.

In order to re-enable high-speed buffer caching during in-
tensive writes, we propose Log-Structured buffered-Merge tree
(simplified as LSbM-tree) by adding a compaction buffer on disks,
to minimize the cache invalidations on buffer cache caused by
compactions. The compaction buffer efficiently and adaptively
maintains the frequently visited data sets. In LSbM, strong
locality objects can be effectively kept in the buffer cache with
minimum or without harmful invalidations. With the help of a
small on-disk compaction buffer, LSbM achieves a high query
performance by enabling effective buffer caching, while retaining
all the merits of LSM-tree for write-intensive data processing,
and providing high bandwidth of disks for range queries. We
have implemented LSbM based on LevelDB. We show that
with a standard buffer cache and a hard disk, LSbM can
achieve 2x performance improvement over LevelDB. We have
also compared LSbM with other existing solutions to show its
strong effectiveness.

I. INTRODUCTION

With the rise of cloud computing in enterprises and user-

centric Internet services, the volume of data that are generated

and accessed continues to increase at a high pace. There is

an increasing need to access user data that are created and

updated rapidly in real time. In this paper, we aim to develop

an efficient storage engine and its implementation to serve

both intensive reads and writes. We present an effective and

low cost variant of LSM-tree to accomplish our goal.

LSM-tree [1] was originally designed for high throughput

transaction systems. It writes data to disk sequentially and

keeps them sorted in multiple levels by merge operations.

LSM-tree can achieve a high write throughput and conduct

fast range query processing on hard disk drives. For these

merits, LSM-tree has been widely used in big data systems

by industries, such as Bigtable [2], HBase [3], Cassandra [4],

and Riak [5], and is the de facto model for write-intensive

data processing.

LSM-tree writes data in a sorted order in the hierarchy of

multiple levels, where the top level is in DRAM, and the rest
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Fig. 1: An example of LSM-tree compaction induced cache invalidations

of levels are on the disk. This structure allows the data writing

and sorting in a batch mode at different levels concurrently.

As an LSM-tree level is full, the sorted data entries in that

level will be merged into the next level. This process is also

called compaction.

However, the impact to buffer cache was not considered in

the original design of LSM-tree. Two types of buffer caches

can be used to cache the frequently visited data in an LSM-tree

storage environment: OS buffer cache and DB buffer cache.

The cached data blocks in both OS buffer cache and DB

buffer cache are directly indexed to the data source on the disk.

However, the OS buffer cache is also temporarily used to cache

the data blocks read for compactions, while the DB buffer

cache is not. As OS buffer cache is used, all data requested by

conducting both queries and compactions will be temporarily

stored in it. As the capacity of OS buffer cache is limited,

the data requested by queries can be continuously evicted

by the data blocks loaded by compactions. Thus, compaction

operations may cause capacity misses in OS buffer cache.

To avoid these interferences, an LSM-tree based database is

implemented with an application level DB buffer cache to

serve queries only [2], [3], [4], [6]. However, cached data in

DB buffer can also be invalidated by compactions.

The compaction operations frequently reorganize the data

objects stored on the disk and change mapping indices of

many data objects including the ones in the DB buffer cache.

As a result, affected data objects in the DB buffer cache are

invalidated, which are called LSM-tree compaction induced
cache invalidations, causing a high miss rate on the DB buffer

cache as a structural problem. As shown in an example in

Figure 1, a, b, c, and d are frequently requested objects,

which belong to two LSM levels stored on the disk. Originally,

the disk blocks containing these objects are kept in the DB

buffer cache. However, when the two levels are compacted

into a single level by LSM-tree, the compacted data are

written to a new location on the disk. Thus, even though

the contents of these objects remain unchanged, the cached
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Fig. 2: Inabilities of buffer caches

data blocks of these objects have to be invalidated since the

underlying disk data blocks have been moved. When those

objects are requested again, the system has to load the new data

blocks containing those objects from disk. With the changes

of their referencing addresses, the access information of these

objects is also lost. Even worse, since compaction writes are

conducted in a batch mode, for workloads with high spatial

locality, the corresponding DB buffer cache invalidations and

data reloading occur in bursts, causing significant performance

churns [7], [8].

We have conducted two tests to demonstrate the inabili-

ties of the two buffer caches on LSM-tree. The read/write

workloads of each test, and the experimental setup will be

presented in detail in Section VI. Figure 2 shows hit ratios

of the buffer caches (vertical bar) as time passes (horizontal

bar) for workloads with both reads and writes. When only OS

buffer cache is used (dashed-line), the hit ratio goes up and

down periodically. When compactions are conducted on the

frequently visited data blocks, the data are pre-fetched into

memory and hit ratio increases. However, those pre-fetched

data are continuously evicted by the compactions conducted on

the infrequently visited data blocks. When a DB buffer cache

is used, the hit ratio also periodically goes up and down. The

frequently visited data blocks that are cached in the DB buffer

cache are invalidated due to reorganizing the data blocks on

disks by compactions.

A. Existing solutions

To effectively use buffer caching with LSM-tree, researchers

have proposed and implemented several methods. We briefly

introduce three representative solutions and their limits as

follows.

Key-Value store cache: This solution is to build a key-

value store in DRAM on top of the LSM-tree [4]. In general,

the Key-Value store cache is an independent buffer in memory

without any address indexing to the data source on disks [9].

For a read access, it first checks the key-value store and hopes

to have a fast access for a hit. Otherwise, it checks the LSM-

tree, and the data will be retrieved from the buffer cache or the

disk. This approach would reduce the amount of accesses to

buffer cache or even bypass it. However, the key-value store

would not be efficient for range queries and for accessing data

with high spacial locality due to its nature of random stores

and high efficiency for random accesses.

Dedicated compaction servers: This method is to use ded-

icated servers to conduct compactions, where the compacted

data sets are kept in memory in these servers to be used

to replace data sets in the buffer cache of users with an

algorithm named Incremental Warming up algorithm [7]. This

method attempts to reduce the LSM-tree induced misses by

warming up the buffer cache in this way. The effectiveness

of the dedicated server approach depends on the ability to

identify specific compacted data sets with high locality. It is

based on an assumption that newly compacted data sets would

exhibit high locality of data accesses if they share common

key ranges with data in the buffer cache. Having conducted

experiments, we show that this assumption may not apply

for certain workloads, thus, this approach may not be always

effective.

Stepped-Merge algorithm (SM-tree in short): This algo-

rithm is proposed to balance the tradeoff between compaction

I/O and search cost for data warehouses [10]. Similar to

LSM-tree, SM also organizes data into a multilevel structure

of exponentially increasing sizes and compacts data with

sequential I/Os. However, data objects in a level are not fully

sorted and only be read out and sorted when they are moved to

the next level. Thus, the amount of compactions and the pace

of cache invalidations can be reduced significantly. However,

SM-tree may reduce the query performance in two ways.

Firstly, data in each level are not fully sorted. As a result,

the range query performance of SM is low. Secondly, for

workloads with a large portion of repeated data, the entire

database size can be unnecessarily large since the obsolete

data cannot be abandoned by compactions timely.

The goals of our work is to best utilize buffer cache for fast

accesses of both random and range queries, and to best utilize

the merit of disk for long sequential accesses of range queries.

The goals should be accomplished under the basic LSM-tree

structure.

B. Our solution

In this paper, we propose Log-Structured buffered-Merge
tree (LSbM-tree or LSbM in short), an efficient and low

cost LSM-tree variant with a new buffered merge compaction

method. LSbM improves the overall query performance by

retaining the locality in the DB buffer cache for both read and

write intensive workloads (the term ”buffer cache” mentioned

in this paper without notation is referred to the DB buffer

cache).

The basic idea of LSbM is to add an on-disk compaction

buffer, to minimize frequent cache invalidations caused by

compactions. The compaction buffer directly maps to the

buffer cache, and maintains the frequently visited data in

the underlying LSM-tree, but is updated at a much lower

rate than the compaction rate. LSbM directs queries to the

compaction buffer for the frequently visited data that will be

hit in the buffer cache, and to the underlying LSM-tree for

others including long range queries. In short, using a small

size of disk space as compaction buffer, LSbM achieves a

high and stable performance for queries by serving frequently

data accesses with effective buffer caching, while retaining all

the merits of LSM-tree for write-intensive workloads.
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We have implemented a prototype of LSbM based on

LevelDB [6], a widely used LSM-tree library developed by

Google, and conducted extensive experiments with Yahoo!

Cloud Service Benchmark (YCSB) [11]. We show that with

a standard buffer cache and a hard disk storage, our LSbM

implementation can achieve 2x performance improvement

over LevelDB, and significantly outperforms other existing

solutions.

The roadmap of this paper is as follows. Section II presents

the background knowledge of LSM-tree and its merge algo-

rithm. Section III introduces our LSbM design. Sections IV

presents the management of the compaction buffer. Section

V presents the techniques to query LSbM. We present the

performance evaluation of LSbM and comparisons with other

LSM-tree variants in Section VI. Finally, we overview the

related work in Section VII and conclude this paper in Section

VIII.

II. BACKGROUND

In this section, we analyze the internals of LSM-tree com-

pactions, and show how compactions generate frequent data

movement on disks which in turn invalidates the data in the

buffer cache.

A. LSM-tree

In an LSM-tree, data are stored on disks in multiple levels of

increasing sizes. Figure 3 shows the structure of an LSM-tree

with three on-disk levels. The data in each of those levels are

organized as one or multiple sorted structures for the purpose

of efficient lookups which are called sorted tables. Each sorted

table is a B-tree-like directory structure and is optimized for

sequential disk access [1]. As presented in Figure 4, a sorted

table builds a layered index structure on a set of Key-Value
pairs. Continuous Key-Value pairs are packed in a single-page
block which maps to one single disk page. For each single-

page block, a bloom filter [12] is built to check whether a key

is contained in this block. Bloom filter is a space-efficient data

structure for a membership check. A negative result means the

element is not present in the block. However, a positive result

only means a high probability that the element is present in the

block associated with a false positive rate. Multiple continuous

single-page blocks are packed into one unit called multi-page
block. All data in a multi-page block are sequentially stored on

a continuous disk region for efficient sequential data accesses.

In practice, a multi-page block is implemented as a regular file
[6], [3], which maps to a continuous disk region. A sorted table

contains only the metadata of a set of files to serve queries.

For simplicity, we will use the term file to stand for multi-page

block, and block for single-block in this paper.

Following the notations in [1], we call the in-memory write

buffer (level 0) C0, the first on-disk level C1, the second

on-disk level C2, and so on. Denote the number of on-disk

levels of an LSM-tree as k, and denote the maximum sizes of

C0, C1, ..., Ck as S0, S1, ..., Sk, respectively. We call such an

LSM-tree as a k-level LSM-tree. To minimize the total amount

of sequential I/O operations on disk, the size ratio ri between

Ci and Ci−1 (ri = Si

Si−1
, 1 ≤ i ≤ k), should be a constant

for all levels, denoted as r [1]. We call such an LSM-tree as

a balanced LSM-tree. A small size ratio r corresponds to a

large number of levels, k.

Newly arrived data objects are initially inserted and sorted in

C0 which is in memory and then merged into C1. When C1 is

full, its data will be merged to C2, and so on. Only sequential

I/O operations are involved while merging operations are

conducted. In this way, data are written to disk in a log fashion,

and continuously merged to keep the sorted structure, which

reflected by the name Log-Structured Merge-tree.

B. Compactions

A conventional LSM-tree maintains a fully sorted structure

on each level for efficient random and sequential data accesses

[1] [13]. Compactions have to be conducted frequently to keep

all data in each level sorted.

Let us consider that new data objects are inserted into C0 of

an LSM-tree with a constant write throughput w0. For simplic-

ity, we assume each level has the same key range, where keys

are evenly distributed in the range, and all inserted data objects

are unique. Initially Ci+1 is empty. After compacting r full-

sized (Si) sorted tables from Ci, the size of Ci+1 increases

to the limit size Si+1. Then full-sized Ci+1 is merged into

Ci+2 and becomes empty. We call such a process one merge
round. During one merge round, one chunk of data in the

first sorted table from Ci needs not to be merged with any

chunks of data since Ci+1 is empty, and one chunk of data

in the second sorted table from Ci needs to be merged with

one chunk of data in Ci+1, and so on. Finally, one chunk of

data in the rth sorted table from Ci needs to be merged with

r−1 chunks of data in Ci+1. On average, each chunk of data

in Ci needs to be merged with
(1+2+...(r−1))

r = (r−1)
2 chunks

of data in Ci+1. The average I/O operations to compact one

chunk of data down to next level is 1 + (r−1)
2 = (r+1)

2 . With

k on-disk levels, the total disk write rate is
(r+1)

2 kw0.
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Therefore, when a chunk of data is written from the write

buffer to disk,
(r+1)

2 k chunks of data on the disk will be

updated accordingly. As a result, the corresponding data kept

in the buffer cache, if any, have to be invalidated, causing cold

misses for later accesses and performance churns as we have

presented in Section I.

III. SYSTEM DESIGN

The interference from compactions to buffer cache in LSM-

tree is caused by the re-addressing of cached objects on

the disk. Considering this problem root, we aim to control

and manage the dynamics of the compactions of an LSM-

tree. Ideally, the negative impact to buffer cache caused by

compactions can be minimized at a very low cost.

Before introducing how LSbM effectively keeps buffer

cache from being invalidated by compactions, let us consider

why LSM-tree needs to maintain a sorted structure on each

level. In an LSM-tree, any queries will be conducted level

by level. There may exist multiple versions of the same key

at different levels, of which only the newest version is valid.

Since the upper level contains more recent data, queries are

conducted from upper levels to lower levels. The data in each

level may belong to one or multiple sorted tables. The key

ranges of those sorted tables may overlap with each other,

thus all of them need be checked separately. For random

data access, data object will be returned immediately once

a matched key is found. Even though bloom filter can help

avoid unnecessary block accesses, when the number of sorted

tables in each level increases, the overhead of checking bloom

filters and reading false blocks caused by false bloom filter

tests becomes significant. For range query, all sorted tables

will be searched and all data objects covered by the requested

key range will be read out and merged together as the final

result. Querying one level with multiple sorted tables may need

multiple disk seeks. Therefore, the number of sorted tables in

each level needs to be limited.

There is a tradeoff between a highly sorted structure and

less sorted structure. Queries can benefit from a fully sorted

structure of an LSM-tree level, however, maintaining such a

fully sorted structure needs to frequently conduct compactions,

which may in turn invalidate the cached data objects. This

tradeoff motivates us to find a way to maintain a fully sorted

structure of the LSM-tree and, at the same time, keep the buffer

cache from being invalidated by compactions. The basic idea

of our design is to keep two data structures on disk. One

data structure contains the whole data set and the data in each

level are fully sorted as a conventional LSM-tree. We call it

the underlying LSM-tree. Another data structure contains only

the frequently visited data and the data in it are not frequently

updated by compactions. We call it the compaction buffer.

Figure 5 shows the structure of a three-level LSbM-tree. The

left of the figure is the underlying LSM-tree, which consists

of four levels C0, C1, C2, and C3. The middle box is the

buffer cache in DRAM, which is used to cache data requested

by conducting queries. The compaction buffer is in the right

corner of the figure, which is on disk. Data in the compaction

writes
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Fig. 5: The basic structure of a LSbM-tree
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Fig. 6: An illustration of the buffered merge

buffer are also stored as a multiple level structure. The data

in each level consist a list of sorted tables. We call each list a

compaction buffer list. We denote the compaction buffer list of

level i as Bi, and the jth sorted table in Bi as Bj
i . B0

i contains

the most recent data in Bi. Figure 5 shows a compaction buffer

with three compaction buffer lists. Bi(1 ≤ i ≤ 3) contains

frequently visited data sets of level i, but is updated in a very

low rate to enable effective caching.

In level i of LSbM, read requests are dispatched to Bi for

frequently visited data which are highly possible to be hit in

the buffer cache, and to Ci for others. As shown in Figure

5, objects a, b, and c are requested. Among them, a and b
are read from the buffer cache, which are indexed in B1 and

B2 respectively. Object c is loaded from C3 of the underlying

LSM-tree.

IV. COMPACTION BUFFER

The compaction buffer maintains only the frequently visited

data that are not frequently updated by compactions. Thus, the

compaction buffer needs to be able to selectively keep only the

frequently visited data in it and maintain the stability of them.

In this section, we present our buffered merge algorithm that

associates with LSM-tree to prepare data for the compaction

buffer, and a trim process to keep only the frequently visited

data in the compaction buffer. The disk space used by com-

paction buffer is limited and there’s no additional I/O cost for

the compaction buffer construction. Next, we will present the

detailed operations to build the compaction buffer.

A. Buffered merge

Figure 6 presents an illustration of how a buffered merge

works. When Ci is full, all its data will be merged into Ci+1

with a merge sort. At the same time, it will also be appended

into Bi+1 as B0
i+1. Note that B0

i+1 is built with the files of

Ci which already exist on disk. Therefore, no additional I/O

is involved. The data in B0
i+1 which were formerly in Ci will
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not be updated by compactions. Furthermore, B0
i+1 contains

all the data in Bi but are fully sorted, thus it becomes a

better candidate to serve queries compared to Bi. As a result,

the sorted tables in Bi become unnecessary, which will be

removed from the compaction buffer and then deleted from

disk.

When a chunk of repeated data are written into level i +
1, the same amount of obsolete data in Ci+1 are abandoned

by compactions. However, the counterparts of those data in

Bi+1 also become obsolete but cannot be abandoned since

the data in a compaction buffer will not be compacted once

appended. Those obsolete data take extra disk and memory

space. Therefore, a compaction buffer list is not suitable for

levels with repeated data inserted. In LSbM, the existence of

repeated data in level i+1 can be easily detected by comparing

the size of the data compacted into Ci+1 and the size of Ci+1

itself. If the size of Ci+1 is smaller than the data compacted

into it, there must exist repeated data. When repeated data are

detected, LSbM freezes Bi+1. When Ci+1 becomes full and

is merged down to next level, Bi+1 is unfrozen and continues

serving as the compaction buffer list of Ci+1.

With the buffered merge, two data structures are created on

level i: Ci and Bi. Data in Ci are fully sorted but are frequently

updated by compactions, while data in Bi are not updated

frequently but are not fully sorted. Frequently accessed data

blocks in buffer cache are directly indexed in Bi, where

infrequent update prevent data blocks in the buffer cache from

being invalidated. In this way, the compaction buffer works as

a buffer to hide the severe buffer cache invalidations caused

by conducting compactions on the underlying LSM-tree. This

leads to its name, the compaction buffer, and also the name

of the merge algorithm, buffered merge algorithm.

When Ci is full and merged into Ci+1, data in Bi are deleted

and the reads served by Bi are transferred to B0
i+1. Note that

Bi contains the frequently visited data and most of its data

blocks are loaded in the buffer cache. A sudden deletion of Bi

will cause a dramatic hit ratio drop and performance churn. To

slow down the transfer process, we develop the buffered merge

algorithm associated with bLSM-tree’s gear scheduler merge

algorithm [13]. In bLSM, data in level i(0 ≤ i < k) belong

to two sorted tables, Ci and C ′i. When Ci is full, its data will

be moved to C ′i and start to be merged into Ci+1. Meanwhile,

Ci becomes empty and continues to receive data merged down

from level i− 1(i > 0) or inserted by user applications (level

0). In each level, bLSM defines two parameters inprogress

and outprogress to regulated the progresses of merging data

into Ci and moving data out from C ′i. For simplicity, we

simplify this regulation by fixing the total size of Ci and

C ′i as a constant, which is the maximum size of level i, Si.

As the left side of Figure 7 shows, when a chunk of data

are compacted into Ci, the same amount of data in C ′i are

compacted into Ci+1. As a result, when Ci is full, C ′i must be

empty and the data in Ci can be moved to C ′i and start over.

With this design, the compactions conducted on one level are

driven by the compactions conducted on its upper level and

eventually driven by the insertion operations conducted on the

write buffer, C0. As consequences, data can be inserted into

C0 with a predictable latency [13].

Algorithm 1: buffered merge

1 while true do
2 if |C0|+ |C′

0| < S0 then
3 Continue;

4 for each level i from 0 to k − 1 do
5 if |Ci|+ |C′

i| < Si then
6 Break;

7 if |C′
i| = ∅ then

8 Move data from Ci into C′
i;

9 Move data from Bi into B′
i;

/* record the initial size of B′
i */

10 S′
i← |B′

i|;
11 Create an empty sorted table in Bi+1 as B0

i+1;

12 fa ← pick one file from C′
i;

/* merge the files with overlapped key
ranges */

13 Fb ← all files in Ci+1 whose key range overlaps
[min(fa),max(fa)] ;

14 Fc ← merge fa and Fb with a merge sort;
/* install the result */

15 Remove fa from C′
i;

16 Replace Fb with Fc in Ci+1;

17 Append fa to B0
i+1;

/* gradually remove the files in B′
i */

18 while |B′
i|

S′
i

>
|C′

i|
Si

do
19 fd← file in B′

i with the smallest maximum
key;

20 Remove fd from B′
i;

We adapted this merge algorithm in our buffered merge

operations. As shown in Figure 7, the ith(0 ≤ i < k) level

of the compaction buffer is also divided into two parts: Bi

and B′i. Algorithm 1 describes the buffered merge algorithm

based on bLSM-tree’s merge algorithm. The additional oper-

ations of buffered merge compared to bLSM-tree’s merge are

highlighted with bold font. One compaction thread monitors

the size of level 0, and data are inserted into C0 by another

thread. Once the total size of level 0 (|C0| + |C ′0|) exceeds
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the limited size of level 0, S0, compactions are triggered (line

2-3). Compactions are conducted level by level until the last

level or a non-full-sized level is encountered (line 5-6). For a

specific level i(0 ≤ i < k), if C ′i is empty, data will be moved

from Ci into C ′i. Meanwhile, data in Bi also be moved into

B′i (line 8-9). Those data movements do not need any I/O

operations but only index modifications. Note that B′i only

contains the frequently visited data of level i, thus the size of

B′i is a variable whose value is smaller than Si. One parameter

S′i is used to record the size of B′i when data are initially

moved into it (line 10). An empty sorted table B0
i+1 is created

in Bi+1 to receive data moved from C ′i (line 11). After all

those preparations, C ′i is guaranteed to be nonempty. One file

is picked out from C ′i as fa, and then fa is merged into Ci+1

with a merge sort (line 12-16). The basic compaction units

for different LSM-tree implementations are different. Here we

inherit the implementation of LevelDB which compacts one

file down to next level in each compaction. Instead of being

deleted from disk, fa then be appended into B0
i+1 (line 17).

The removal of the data in B′i keeps the same pace as the

removal of the data in C ′i. In another word,
|B′i|
S′i

equals to
|C′i|
Si

during the entire merge round. To achieve this, B′i removes the

files with the smallest maximum keys after each compaction to

remove the same portion of data as C ′i does in key order (line

18-20). Different from the underlying LSM-tree, removing a

file from the compaction buffer has a different meaning. A

file removed from the compaction buffer will be marked as

removed. All its indices except the minimum and maximum

keys will be removed from the memory, and all its data will

be deleted from the disk. This is specifically designed for the

query correctness which will be discussed in Section V.

For buffered merge, if all data appended are kept in the

compaction buffer, the entire database size will be doubled.

Further, as discussed in Section III, conducting queries on

infrequently visited data is more sensitive to the number

of sorted tables searched since more disk seeks might be

involved. Thus, those infrequently visited data should be

removed from the compaction buffer. The queries conducted

on them should be served by the underlying LSM-tree which

contains far less sorted tables in each level. In next section,

we will explain how compaction buffer selectively keeps only

the frequently visited data in it.

B. Trim the compaction buffer

During running time, the data in the compaction buffer keep

being evaluated to determine whether they are qualified to be

kept in the compaction buffer. We call this process a trim
process. The basic operation unit of the trim process is also

a file. Algorithm 2 shows how LSbM trims the compaction

buffer to selectively keep only the files that contain frequently

visited data in it.

The compaction buffer is trimmed level by level. For level

i(0 < i ≤ k), B0
i is newly appended to Bi and the frequently

accessed data blocks in it are still actively being loaded into the

buffer cache, thus it should not be trimmed. Any other sorted

tables need to be trimmed. For each file f in Bj
i , it is removed

Algorithm 2: trim the compaction buffer

1 for each level i(0 < i ≤ k) do
/* selectively keep the files in Bi */

2 for each sorted table Bj
i (j > 0) do

3 for each file f in Bj
i do

4 total← number of blocks in f ;
5 cached← number of cached blocks in f ;

6 if cached
total

< threshold then
7 Remove f from Bj

i ;

if it does not contain frequently visited data. In LSbM, whether

one file contains frequently visited data or not is measured by

the percentage of its blocks cached in the buffer cache. The

number of cached blocks for one file can be collected by an

integer counter cached, and it will be increased once one of

its blocks is loaded into buffer cache, and decreased once one

of its blocks is evicted from buffer cache. Those operations

are light weight with little overhead. When the percentage

of cached blocks is smaller than a threshold, this file will

be removed from the compaction buffer (line 4-7). The trim

processes are conducted by an independent thread periodically.

The interval time can be adjusted as an optimized parameter.

C. File size

The size of the file is a key factor for both the underlying

LSM-tree and the compaction buffer. It defines the granularity

of compactions and trim processes. As described in Algorithm

1, data are compacted down one file at a time. With a file size

s, compacting S data from level i to level i + 1 needs up to

(r + 1)Ss input operations to load the data into the memory

and another (r+1)Ss output operations to write the compacted

data on to disk. A larger s brings a smaller number of I/O

operations and higher compaction efficiency. Thus the file size

of the underlying LSM-tree should not be too small. However,

in the compaction buffer, a larger file size causes a lower

precision of frequently visited data identification in the trim

process. That is because the file with a larger key range has a

higher possibility to contain both frequently and infrequently

visited data. Furthermore, the key ranges of the files in the

compaction buffer, which formerly belong to the upper level

of the underlying LSM-tree, can be r times larger than the

files in the underlying LSM-tree at the same level. As will be

discussed in Section V, removing one file from Bi may stop

not only this file, but also another r− 1 files in Bi whose key

ranges overlap with the removed file from being used to serve

queries. As a result, once one file is removed from Bi, queries

conducted on up to r files can be redirected. Since all these

files contain frequently visited data, a big performance drop

may be caused. Thus the file size of the compaction buffer

should not be too big.

The underlying LSM-tree and the compaction buffer re-

quires different optimized file sizes, but all files of compaction

buffer are created by the underlying LSM-tree. To solve this

problem, we add an additional layer in the sorted table’s index
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structure between the sorted table layer and file layer, super-
file. Each super-file mapping to a fixed number of continuous

files, and all these files stored in a continuous disk region. A

super-file is the basic operation unit for the underlying LSM-

tree while a file is the basic operation unit for the compaction

buffer. With this design, even though all files of compaction

buffer are created by the underlying LSM-tree, these two data

structures can pick their own appropriate file sizes accordingly.

D. The effectiveness of the compaction buffer

Our experiments in Section VI will show that, the harmful

buffer cache invalidations are minimized or even eliminated

by the compaction buffer. Two reasons contribute to its ef-

fectiveness. First, instead of mapping to the LSM-tree, the

buffer cache directly maps to the compaction buffer that is built

by appending operations without changing the data addresses.

Thus, the frequency of data updates in the compaction buffer

is significantly reduced compared with that of the LSM-tree.

Second, as the data in level C ′i of the LSM-tree is merged to

its next level, compaction buffer list B′i can start to transfer

the reads on it to next level. The transferring is carefully and

gradually done in order to minimize the chance of harmful

cache invalidations.

The compaction buffer also adapts to a variety of workloads.

For workloads with only intensive writes, no data will be

loaded into the buffer cache and all appended data in the

compaction buffer will be removed by the trim process. For

workloads with only intensive reads, the compaction buffer is

empty since data can only be appended into the compaction

buffer by conducting compactions. For workloads with both

intensive reads and writes, loaded data in the buffer cache

can be effectively kept by the compaction buffer while the

underlying LSM-tree retains all the merits of a conventional

LSM-tree.

E. Disk I/O and storage cost

Building the compaction buffer does not involve any addi-

tional I/O operations. As described in Section IV-A, all files

used to build the compaction buffer already exist on disk. Only

the indices of sorted tables are modified. Therefore, the I/O

cost of building the compaction buffer is neglectable.

With the trim process, all files left in the compaction buffer

must contain a large portion of data blocks which are loaded

in the buffer cache. Therefore, the size of the compaction

buffer is determined by both of the buffer cache size and

the read/write workloads. In general, the sizes of the buffer

cache and the frequently visited data are relatively small. Thus,

the additional disk space cost is low and acceptable which is

proven by experiments in Section VI-E.

V. QUERY PROCESSING

With the buffered merge algorithm, the on-disk data of

LSbM consists of two data structures: the underlying LSM-tree

which contains the entire data set, and the compaction buffer

which contains only the frequently visited data set. Those two

data structures work together harmoniously and effectively to

serve queries.

Algorithm 3: random access

1 Function RandomAccess(ky)
2 for each level i from 0 to k do
3 f ← file in Ci where ky ∈ [min(f),max(f)];
4 if f not found then
5 Continue;

6 b← block in f where ky ∈ [min(b),max(b)];
7 if b not found then
8 Continue;

9 if ky not pass the Bloom Filter check of b then
10 Continue;

/* check the compaction buffer first */
11 for each sorted table Bj

i from B0
i do

12 f ′ ← file in Bj
i where ky ∈ [min(f ′),max(f ′)];

13 if f ′ not found then
14 Continue;

15 if f ′ is marked as removed then
16 Break;

17 b′ ← block in f ′ where ky ∈ [min(b′),max(b′)];
18 if b′ not found then
19 Continue;

20 if ky not pass the Bloom Filter check of b′ then
21 Continue;

22 if ky is found in b′ then
23 Return isFound;

/* served by Ci */
24 if ky is found in b then
25 Return isFound;

26 Return notFound;

Algorithm 3 describes the steps of one random data access.

Random data accesses are conducted level by level. While

searching one level i(0 < i ≤ k) with a compaction buffer

list, the indices and bloom filters of Ci will be checked first

to validate whether this key belong to this level (line 3-10).

If the key is judged not belong to Ci, it is unnecessary to

further check the sorted tables in Bi since it is a subset of

Ci. Otherwise, the sorted tables in Bi will be checked one by

one (line 12-23). Once a removed file whose key range cover

the target key is encountered during this process, the operation

of checking Bi is stopped immediately (line 15-16). That is

because the newest version of the target key may have been

removed from Bi, and an obsolete version may be returned

by mistake. If the target key is found in any one sorted table

in Bi, the target key and value will be returned (line 17-23).

Otherwise, the target block in Ci will be read out and serve

the read (line 24-25). If the target key is not found in any

levels, a not found sign is returned.

Even though each compaction buffer list contains multiple

sorted tables, the indices and bloom filters of the underlying

LSM-tree can help skip the levels that do not contain the target

key. Thus, only the compaction buffer list of the level that

may contain the target key needs to be checked. The number

of sorted tables each compaction buffer list has varies from 0
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to r, and r
2 on average. Further, the target key can be found

in any of the r
2 sorted tables and then be returned. Therefore,

in LSbM, the number of additional sorted tables that need to

be checked for each random access is only about r
4 .

Algorithm 4: range query

1 Function rangequery(rge)
2 for each level i from 0 to k do
3 f ← file in Ci where rge ∩ [min(f),max(f)] �= ∅;
4 if f not found then
5 Continue;

/* check the compaction buffer first */
6 F ← ∅;

7 for each sorted table Bj
i from B0

i do
8 f ′ ← file in Bj

i where rge ∩ [min(f ′),max(f ′)] �= ∅;
9 if f ′ not found then

10 Continue;

11 if f ′ is marked as removed then
12 F ← ∅;
13 Break;

14 Append f ′ in F ;

15 if F = ∅ then
/* served by Ci */

16 Read out data objects from f in range rge;
17 else

/* served by Bi */
18 for each file f ′ in F do
19 Read out data objects from f ′ in range rge;

The steps of conducting range queries are listed in Algo-

rithm 4. For simplicity, we assume the requested key range

can be covered by only one file in each sorted table. While

searching level i(0 < i ≤ k) with a compaction buffer list,

the index of Ci will be checked first. If the requested key

range does not overlap any files in Ci, continue searching

other levels (line 3-5). Otherwise, the sorted tables in Bi need

to be checked first. While checking sorted tables in Bi, a file

queue F is maintained to record all the files in Bi whose

key ranges overlap with the requested key range (line 8-14).

Similar to random data access, we stop checking Bi and clear

the file queue F once a removed file is found overlapping

the requested key range (line 11-13), since Bi may contain

incomplete requested data. Finally, if F is not empty after

checking Bi, the requested data in the files of F will be read

out. Otherwise, the requested data in the file f from Ci will

be read out (line 15-19).

Those two algorithms simplify the queries conducted on

LSbM by assuming there are only Ci and Bi in level i(0 <
i < k). However, one level of LSbM may contain four

components: Ci, C
′
i, Bi and B′i. For this case, the combination

of C ′i and B0
i+1 is treated as a whole since data are moved

from C ′i into B0
i+1 and their key ranges complement each

other. The data in B′i are a subset of data in this combination.

When conducting queries on level i, Ci and its compaction

buffer list Bi will be checked first, and then the combination

of C ′i and B0
i+1, and its compaction buffer list B′i are checked.

Both follow the steps listed in Algorithms 3 and 4.

VI. EXPERIMENTS

We compare the query performance results among LevelDB,

SM-tree, bLSM-tree, bLSM-tree with Key-Value store cache,

bLSM-tree with incremental warming up and LSbM-tree with

experiments in this section.

A. Experimental setup

Our LSbM-tree implementation is built with LevelDB 1.15

[6]. It implements the buffered merge in the LevelDB code

framework. We have also implemented the Stepped-Merge

algorithm [10] [14], bLSM-tree, the incremental warming up

method [7], and K-V store caching method used by Cassandra

[4] as comparisons.

The hardware system is a machine running Linux kernel

4.4.0-64, which has two quad-core Intel E5354 processors,

8 GB main memory. The maximum size of the DB buffer

cache is set to 6GB. The rest memory space is shared by the

indices of sorted tables, bloom filters, OS buffer cache, and

the operating system. Two Seagate hard disk drives (Seagate

Cheetah 15K.7, 450GB) are configured as RAID0 as the

storage for LSM-tree. The HDD RAID is formatted with ext4

file system.

The size of level 0 is set to 100 MB. With a size ratio

r = 10, the maximum size Si of level 1, 2, and 3 is 1GB,

10GB and 100GB respectively. The file size is set to 2MB

which is the default setting of LevelDB. We define a super-file
contains r files. With r = 10, the size of a super-file is 20MB.

The size of a block is set to 4KB that is equal to the disk page

size. The bloom filter is set to 15-bit per element. The key-

value pair size is set to 1 KB which is the default value of

YCSB and is a common case in industry environment [11]

[15]. The interval of two trim processes is set to 30 seconds,

and a file can be kept in the compaction buffer only if 80%

of its blocks are cached in the buffer cache.

B. Workloads

All writes are uniformly distributed on a data set with 20GB

unique data. With this write workload, levels 1 and 2 will be

full and merged down to next level after inserting 1GB and

10GB data respectively. The maximum number of sorted tables

that B1 and B2 have are 10, which is the size ratio r. On the

other hand, all inserted data except the first 20GB data are

repeated data for level 3. Those repeated data will be detected

while conducting compactions on C3. As a result, B3 is frozen.

The read workloads in our experiments are based on Yahoo!
Cloud Serving Benchmark (YCSB) [11], which provides a

number of workload templates abstracted from real-world

applications. We have built the RangeHot workload, which

characterizes requests with strong spatial locality, i.e., a large

portion of reads is concentrated in a hot range. In our test, 3GB

continuous data range is set as the hot range, and 98% of the

reads requests lie in this range. This workload is generated at

run time with the db bench utility provided in the LevelDB

package.
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(c) bLSM-tree with incremental warming up
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(d) LSbM-tree

Fig. 8: Hit ratio changes of tests on RangeHot workloads

We conducted a series of experiments to evaluate the

random read and range query performance of LSbM and other

LSM-tree variants under intensive writes. The write throughput

for all tests is 1,000 OPS (operations per second). All writes

are sent via a single thread and any other random reads and

range queries are sent by another 8 threads. During these

experiments, the DB buffer cache hit ratio, read throughput,

database size and other statistics are measured online and

stored to a log file on the disk. Each test is conducted for

20,000 seconds.

C. Performance of random reads

We have evaluated LSbM on its random read performance

by RangeHot workload with intensive writes. We also conduct-

ed three tests on bLSM-tree, LevelDB and bLSM-tree with

incremental warming up for comparisons. Figure 8 shows the

hit ratio changes (vertical bar) and DB buffer cache usage rate

(dashed line) as time passes (horizontal bar) of all these tests.

bLSM-tree: As shown in Figure 8a, the cached data in

DB buffer cache are periodically invalidated by compactions

in bLSM and the hit ratio goes up and down. The big hit

ratio drops periodically observed in every 1,000 seconds are

caused by the compactions conducted from C ′1 to C2. When

|C2| increases from 0 to S2, the invalidations become more

and more severe.

LevelDB: LevelDB maintains only one sorted table at each

level. Two merge operations exist on level i(0 < i < k)
simultaneously: merge from Ci−1 to Ci and merge from Ci to

Ci+1 [6] [13]. The hit ratio also goes up and down following

the similar pattern of the bLSM-tree (Figure 8b). However, the

hot range in level 2 is updated every 2,000 seconds instead of

1,000 seconds as bLSM-tree does. This phenomenon is caused

by the Non-uniformity of key density which was discussed in

detail in a precious work [16].

LSM-tree with Incremental warming up: We simulated

the incremental warming up algorithm on a single machine

in the following way: before the newly compacted blocks are

flushed from memory, the blocks in the buffer cache that will

be evicted in this compaction will be replaced with the newly

generated blocks whose key ranges overlap with them [7]. This

approach is based on an assumption that newly compacted

blocks will also be frequently visited if they overlap with any

blocks in the buffer cache. However, this assumption is true

only if all overlapped ranges belong to the hot range. Let

us assume that one key-value pair of level i(0 ≤ i < k) is

loaded into the buffer cache by a read operation. The block

containing that pair will be marked as Hot when it is being

compacted down to the lower level. Since up to r blocks in

level i + 1 share the same key range with that block, up to

r+1 newly generated blocks will be loaded into buffer cache

after this compaction. Furthermore, those r + 1 blocks will

cause the loading of another (r + 1) ∗ (r + 1) blocks when

they are being compacted to level i + 2. Therefore, one read

operation on level i will load as many as (r+1)k−i blocks into

buffer cache. If this read is conducted inside the hot range, the

incremental warming up can help pre-fetch hot data into buffer

cache. Otherwise, the incremental warming up will load even

more infrequently visited data blocks into buffer cache and

continuously evict the frequently accessed data blocks. Figure

8c shows the change of the buffer cache hit ratio over time

for test on bLSM-tree with incremental warming up. With 2%

of reads lie out of the hot range, the hit ratio goes up and

down periodically. When the compaction is conducted on the

hot range, the hit ratio increases sharply because of a pre-

fetching effect discussed above. However, those data blocks in

the buffer cache then be gradually evicted by the infrequently

accessed data blocks loaded by the incremental warming up

process. This experiment shows that the incremental warming

up method may not work for certain workloads.

LSbM-tree: As shown in Figure 8d, the hit ratio of LSbM

keeps steady and high. Note that all data compacted to level

3 are repeated data, thus the compaction buffer list of level 3

(B3) is frozen. As a result, the buffer cache is still invalidated

when data are compacted from C ′2 to C3. However, since the

data in B′2 are gradually deleted as described in Section IV-A,

part of the hot data is still kept in the buffer cache by B′2 and

the invalidation issue is mitigated.

Figure 9 compares the average buffer cache hit ratios

and throughputs of bLSM, LevelDB, bLSM with incremental

warming up, and LSbM on RangeHot workload. It shows

that LSbM achieves a much higher buffer cache hit ratio

and random read throughput than other LSM-tree variants on
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Fig. 10: Throughput changes of tests on range queries

RangeHot workloads with intensive writes.

D. Performance of range queries

In order to evaluate the range query performance of LS-

bM and other LSM-tree variants under intensive writes, we

perform another set of tests with bLSM-tree, SM-tree, bLSM-

tree with additional K-V store cache and LSbM. Each read

operation follows the RangeHot workload, but will read all the

data lie in a 100KB range. The throughput changes over time

for all tests are shown in Figure 10, and the overall throughputs

of all tests are given in Figure 11.

bLSM-tree: Compared to random data accesses, the range

queries conducted on bLSM-tree are influenced less by inten-

sive writes. That is because when the buffer cache is invalidat-

ed, the invalidated data can be loaded back to buffer cache by

range queries more quickly than random data accesses, since

sequential I/O is much faster on HDD than random I/O. The

throughput is 1,066 QPS.

Key-Value store cache: In this test, a Key-Value store

is built on top of the bLSM-tree. Among the 6GB cache

spaces, 3GB is allocated to the Key-Value store cache, and

the rest memory space is allocated to a DB buffer cache.

The throughput of the test using an additional Key-Value

1066

  68
 228

1134

bLSM K-V cache SM LSbM

LSM-tree variants

0

500

1000

1500

th
ro

u
g
h
p
u
t(

Q
P

S
)

Fig. 11: Throughput comparisons of range queries

store is only 68 QPS. It is low because of two reasons.

Firstly, when an additional Key-Value store cache is used,

the memory space for buffer cache is reduced, which causes

capacity misses. Secondly, the data in the buffer cache will

keep being invalidated by compactions, which causes LSM-
tree compaction induced cache invalidations.

Stepped-Merge Method (SM-tree): We also implemented

the Stepped-Merge Method. When the write buffer C0 is full,

instead of merging with C1, it will be appended to C1 as a

sorted table of it. When Ci(1 ≤ i < k) is full, all sorted tables

in Ci will be merged together and be appended to Ci+1. As

a result, each level of SM-tree contains 0 to r sorted tables.

The range query throughput of SM-tree is only 228 QPS. It is

low because of two reasons. Firstly, when range queries must

be served by disk, conducting range queries on one level with

multiple sorted tables may need multiple disk seeks. Secondly,

with the given write workloads, obsolete data will be piled in

level 3 and loaded into buffer cache by range queries, which

reduce the effective buffer cache capacity. As shown in Figure

10a, in the first 10,000 seconds, the total number of sorted

tables searched for each query increases and the throughput

decreases. At around 10,000 seconds, level 2 becomes full and

all its sorted tables are compacted together as a sorted table of

level 3. The total number of sorted tables then decreases, and

the range query throughput increases a little bit. However, due

to the shrunk of effective buffer cache capacity caused by the

obsolete data, the throughput becomes extremely low. Thus,

to achieve high performance range queries, the compacted

structure of the underlying LSM-tree must be retained.

LSbM-tree: By contrast, LSbM achieves the best perfor-

mance. The buffer cache invalidation issue is further mitigated

compared to bLSM-tree and the throughput is 1,134 QPS

(Figure 10b). The sorted structure on underlying LSM-tree

can support on disk range queries efficiently, meanwhile the

compaction buffer can serve fast data accesses by effectively

keeping frequently visited data in the buffer cache.

E. Database size

Among all the tests conducted above, LevelDB, bLSM-tree,

SM-tree and LSbM-tree have different on-disk data structures,

thus the database size of those LSM-tree variants may differ

from each other. While conducting tests, the realtime database

sizes are recorded, and the changes of those sizes over time

can be found in Figure 12.

As data are written in the database, compactions are con-

ducted to merge data from upper levels to lower levels and

eventually stay at the last level. Note that with the given

write workloads, all inserted data to level 3, the last level,

are repeated data. In bLSM and LevelDB, when a chunk of

data are compacted into level 3, the same size of obsolete

data are deleted during compaction. Thus the database sizes

do not change a lot. However, due to the lazy compaction

method of SM-tree, data will be piled in level 3 and the

obsolete data will not be deleted until level 3 is full. As a

result, the database size keeps increasing. Even worse, when

one level is full, additional spaces are needed to merge the
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entire level together. As shown in Figure 12, the database size

of SM bursts periodically. The small bursts observed every

1,000 seconds are caused by compacting sorted tables in level

1, and the big bursts observed every 10,000 seconds are caused

by compacting sorted tables in level 2. The database size of

LSbM is slightly greater than the bLSM and LevelDB, since

the compaction buffer takes additional space. However, the

size of the compaction buffer is limited due to the trim process.

The average database sizes of bLSM-tree, LevelDB, SM-

tree, LSbM-tree can be found in Figure 13. It proves that with

the given read and write workloads, the additional space cost

of LSbM is very low, which is about 4% more space than that

of bLSM and LevelDB. In contrast, the amount of repeated

data due to lazy compaction in SM add as high as about 50%

more disk space.

VII. OTHER RELATED WORK

In order to reduce the compaction cost, some production

systems only compact data partially in run time, and run a full

compaction during system idle time. In HBase , the former

is called minor compaction, while the latter is called major

compaction [3]. However, disabling major compaction during

run time mainly reduces the compaction of old data. These old

data refer to the last level data in a standard LSM-tree, which

are less frequently accessed than new data. Thus, just like SM,

this approach cannot avoid the interference from compactions

to buffer caching. In practice, HBase still suffers low read

performance during intensive writes [7].

RocksDB compiles and utilizes several techniques to best u-

tilize the efficiency of flash-based storage systems like SSD. It

adapts the stepped merge algorithm as its universal compaction

method, and uses Key-Value cache as an option for certain

workloads [14]. However, both Key-Value cache and stepped

merge methods have their limits as discussed in Section I.

VT-tree is an extension of LSM-tree to avoid unnecessary

merges for presorted data [17]. LSM-trie reduces the write

amplification of an LSM-tree with an SM-tree-like merge

algorithm, and optimizes the random data access performance

on the multiple sorted tables structure in each level [18]. An

FD-tree is proposed for data indexing on SSDs without random

writes, which has a similar idea to LSM-tree and is enhanced

with fractional cascading technique for a low memory usage

[19]. However, a lookup needs multiple disk accesses if the

object is not found in the first level. LOCS exploits the

internal parallelism among flash channels to improve SSD-

based LSM-trees [20] [21]. cLSM is an LSM-tree variant

supporting scalable concurrency with multi-core processors

[22]. WiscKey is proposed to separate the storage of key and

value, which significantly eliminates the write amplification

issue of LSM-tree compactions on SSD [23]. It exploits the

internal parallelism of SSD and multi-thread to achieve high

range query performance even the values of continuous keys

are discretely stored on disk. In contrast, our LSbM is a low

cost general solution to solve the fundamental problem of data

caching in LSM-tree.

VIII. CONCLUSION

LSM-tree has been effectively designed and implemented

for write-intensive workloads. However, when both read- and

write-intensive workloads co-exist, the LSM-tree compaction

induced buffer cache invalidations periodically drop cache

performance for accessing high locality data. Existing methods

to address the issue, such as a KV-store cache to bypass the

buffer cache, SM by reducing the compaction frequency, and

others, are partially effective, leaving several other perfor-

mance issues, such as ineffective range queries and remaining

LSM-tree induced invalidations. We propose LSbM by adding

a small compaction buffer on disk, which plays three major

roles to fundamentally address the invalidation issue and other

issues of existing methods and to retain all the merits of

LSM-tree and other methods. First, the compaction buffer is

selectively and adaptively built and managed, where the data

blocks are consistently kept with the ones in the buffer cache.

Thus, the LSM-tree-induced invalidations are minimized and

eliminated. Second, LSbM best utilizes both buffer cache and

disks for both random accesses and range queries. Finally,

the compaction buffer is only built when it is necessary

without computing overhead. Under either read only or write

only workload, the compaction buffer is adaptively shrunk

and disappears eventually. Thus, the disk capacity overhead

is minimized. In this paper, we have made a strong case

for LSbM to best utilize buffer cache and disks for various

workloads with both intensive reads and writes.
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