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LSM-tree has been widely used in data management production systems for write-intensive workloads. How-

ever, as read and write workloads co-exist under LSM-tree, data accesses can experience long latency and low

throughput due to the interferences to buffer caching from the compaction, a major and frequent operation

in LSM-tree. After a compaction, the existing data blocks are reorganized and written to other locations on

disks. As a result, the related data blocks that have been loaded in the buffer cache are invalidated since their

referencing addresses are changed, causing serious performance degradations.

To re-enable high-speed buffer caching during intensive writes, we propose Log-Structured buffered-Merge

tree (simplified as LSbM-tree) by adding a compaction buffer on disks to minimize the cache invalidations on

buffer cache caused by compactions. The compaction buffer efficiently and adaptively maintains the fre-

quently visited datasets. In LSbM, strong locality objects can be effectively kept in the buffer cache with

minimum or no harmful invalidations. With the help of a small on-disk compaction buffer, LSbM achieves

a high query performance by enabling effective buffer caching, while retaining all the merits of LSM-tree

for write-intensive data processing and providing high bandwidth of disks for range queries. We have imple-

mented LSbM based on LevelDB. We show that with a standard buffer cache and a hard disk, LSbM can achieve

2x performance improvement over LevelDB. We have also compared LSbM with other existing solutions to

show its strong cache effectiveness.
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1 INTRODUCTION

With the rise of cloud computing in enterprises and user-centric Internet services, the volume of
data that are generated and accessed continues to increase at a high pace. There is an increasing
need to access user data that are created and updated rapidly in real time. In this article, we aim
to develop an efficient storage engine and its implementation to serve both intensive reads and
writes. We present an effective and low-cost variant of LSM-tree to accomplish our goal.

LSM-tree [19] was originally designed for high throughput transaction systems. It writes data
to disk sequentially and keeps them sorted in multiple levels by merge operations. LSM-tree can
achieve a high write throughput and conduct fast range query processing on hard disk drives. For
these merits, LSM-tree has been widely used in big data systems by industries, such as Bigtable
[7], HBase [3], Cassandra [2], and Riak [5], and is the de facto model for write-intensive data
processing.

As shown in Figure 1, LSM-tree writes data in a sorted order in the hierarchy of multiple levels,
where the top level is in DRAM, and the rest of levels are on the disk. This structure allows the
data writing and sorting in a batch mode at different levels concurrently. As an LSM-tree level is
full, the sorted data entries in that level will be merged into the next level. This process is also
called compaction.

However, the impact to buffer cache was not considered in the original design of LSM-tree. As
shown in Figure 1, data objects a, b, and c are requested by user application. The indices of LSM-
tree help locate the disk blocks containing those objects, and then those disk blocks are loaded into
the buffer cache. Any future queries conducted on those disk blocks will be served by the buffer
cache directly to avoid expensive disk accesses. Two types of buffer caches can be used to cache
the frequently visited data in an LSM-tree storage environment: OS buffer cache and DB buffer

cache. The cached data blocks in both OS buffer cache and DB buffer cache are directly indexed
to the data source on the disk. However, the OS buffer cache is also temporarily used to cache the
data blocks read for compactions, while the DB buffer cache is not. As OS buffer cache is used, all
data requested by conducting both queries and compactions will be temporarily stored in it. As the
capacity of OS buffer cache is limited, the data requested by queries can be continuously evicted by
the data blocks loaded by compactions. Thus, compaction operations may cause capacity misses
in OS buffer cache. To avoid these interferences, an LSM-tree based database is implemented with
an application level DB buffer cache to serve queries only [2, 3, 7, 12]. However, cached data in DB
buffer can also be invalidated by compactions.

The compaction operations frequently reorganize the data objects stored on the disk and
change mapping indices of many data objects including the ones in the DB buffer cache. As a
result, affected data objects in the DB buffer cache are invalidated, which are called LSM-tree

compaction induced cache invalidations, causing a high miss rate on the DB buffer cache as a
structural problem. As shown in an example in Figure 2(a), (b), (c), and (d) are frequently requested
objects, which belong to two LSM levels stored on the disk. Originally, the disk blocks containing
these objects are kept in the DB buffer cache. However, when the two levels are compacted into
a single level by LSM-tree, the compacted data are written to a new location on the disk. Thus,
even though the content of these objects remains unchanged, the cached data blocks of these
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Fig. 1. Basic structure of an LSM-tree: (1) Data blocks in the buffer cache are directly indexed to the data
source on the disk. (2) To make a fully sorted dataset in each level, compaction is timely conducted, which
is also called “Eager” compaction.

Fig. 2. An example of LSM-tree compaction induced cache invalidations.

Fig. 3. Inabilities of buffer caches.

objects have to be invalidated, since the underlying disk data blocks have been moved. When
those objects are requested again, the system has to load the new data blocks containing those
objects from disk. With the changes of their referencing addresses, the access information of
these objects is also lost. Even worse, since compaction writes are conducted in a batch mode, for
workloads with high spatial locality, the corresponding DB buffer cache invalidations and data
reloading occur in bursts, causing significant performance churns [1, 18].

We have conducted two tests to demonstrate the inabilities of the two buffer caches on LSM-tree.
The read/write workloads of each test, and the experimental setup will be presented in detail in
Section 6. Figure 3 shows hit ratios of the buffer caches (vertical bar) as time passes (horizontal bar)
for workloads with both reads and writes. When only OS buffer cache is used (dashed line), the hit
ratio goes up and down periodically. When compactions are conducted on the frequently visited

ACM Transactions on Storage, Vol. 14, No. 2, Article 15. Publication date: April 2018.



15:4 D. Teng et al.

Fig. 4. The layered index structure of a sorted table.

data blocks, the data are pre-fetched into memory and hit ratio increases. However, those pre-
fetched data are continuously evicted by the compactions conducted on the infrequently visited
data blocks. When a DB buffer cache is used, the hit ratio also periodically goes up and down.
The frequently visited data blocks that are cached in the DB buffer cache are invalidated due to
reorganizing the data blocks on disks by compactions.

In this article, we propose Log-Structured buffered-Merge tree (LSbM-tree or LSbM in short), an
efficient and low-cost LSM-tree variant with a new buffered merge compaction method. LSbM-
tree improves the overall query performance by retaining the locality in the DB buffer cache for
both read and write intensive workloads (the term“buffer cache” mentioned in this article without
notation refers to the DB buffer cache).

The roadmap of this article is as follows. Section 2 presents the background knowledge of LSM-
tree, the merge algorithm of LSM-tree, some other solutions and how we are motivated to propose
our solution. Section 3 introduces our LSbM-tree design. Sections 4 presents the management of
the compaction buffer. Section 5 presents the techniques to query an LSbM-tree. We present the
performance evaluation of LSbM-tree and comparisons with other LSM-tree variants in Section 6.
Finally, we overview the related work in Section 7 and conclude this article in Section 8.

2 MOTIVATION

In this section, we analyze the internals of LSM-tree compactions and show how compactions
generate frequent data movement on disk, which in turn invalidates the data in the buffer cache.
We also briefly introduce some other solutions and our own solution in this section.

2.1 LSM-tree

In an LSM-tree, data are stored on disks in multiple levels with increasing sizes. Figure 1 shows the
structure of an LSM-tree with three on-disk levels. The data in each of those levels are organized
as one or multiple sorted structures for the purpose of efficient lookups, which are called sorted

tables. Each sorted table is a B-tree-like directory structure and is optimized for sequential disk
access [19]. As presented in Figure 4, a sorted table builds a layered index structure on a set of
Key-Value pairs. Continuous Key-Value pairs are packed in a single-page block, which maps to one
single disk page. For each single-page block, a bloom filter [6] is built to check whether a key is
contained in this block. Bloom filter is a space-efficient data structure for a membership check. A
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negative result means the element is not present in the block. However, a positive result only means
a high probability that the element is present in the block associated with a false positive rate.
Multiple continuous single-page blocks are packed into one unit called multi-page block. All data
in a multi-page block are sequentially stored on a continuous disk region for efficient sequential
data accesses. In practice, a multi-page block is implemented as a regular file [3, 12], which maps to
a continuous disk region. A sorted table contains only the metadata of a set of files to serve queries.
For simplicity, we will use the term file to stand for multi-page block, and block for single-block in
this article.

Following the notations in prior work [19], we call the in-memory write buffer (level 0) C0, the
first on-disk level C1, the second on-disk level C2, and so on. Denote the number of on-disk levels
of an LSM-tree as k , and denote the maximum sizes ofC0,C1, . . . ,Ck as S0, S1, . . . , Sk , respectively.
We call such an LSM-tree as a k-level LSM-tree. To minimize the total amount of sequential I/O

operations on disk, the size ratio ri betweenCi andCi−1 (ri =
Si

Si−1
, 1 ≤ i ≤ k), should be a constant

for all levels, denoted as r [19]. We call such an LSM-tree as a balanced LSM-tree. A small size ratio
r corresponds to a large number of levels, k .

Newly arrived data objects are initially inserted and sorted in C0 which is in memory and then
merged into C1. When C1 is full, its data will be merged to C2, and so on. Only sequential I/O
operations are involved while merging operations are conducted. In this way, data are written to
disk in a log fashion, and continuously merged to keep the sorted structure, which reflected by the
name Log-Structured Merge-tree.

2.2 Compactions

A conventional LSM-tree maintains a fully sorted structure on each level for efficient random and
sequential data accesses [19, 20]. Compactions have to be conducted frequently to keep all data in
each level sorted.

Let us consider that new data objects are inserted into C0 of an LSM-tree with a constant write
throughputw0. For simplicity, we assume each level has the same key range, where keys are evenly
distributed in the range, and all inserted data objects are unique. Initially Ci+1 is empty. After
compacting r full-sized (Si ) sorted tables from Ci , the size of Ci+1 increases to the limit size Si+1.
Then full-sized Ci+1 is merged into Ci+2 and becomes empty. We call such a process one merge

round. During one merge round, one chunk of data in the first sorted table fromCi needs not to be
merged with any chunks of data, since Ci+1 is empty, and one chunk of data in the second sorted
table from Ci needs to be merged with one chunk of data in Ci+1, and so on. Finally, one chunk
of data in the rth sorted table from Ci needs to be merged with r − 1 chunks of data in Ci+1. On

average, each chunk of data in Ci needs to be merged with
(1+2+...(r−1))

r
=

(r−1)
2 chunks of data in

Ci+1. The average number of I/O operations to compact one chunk of data down to next level is

1 + (r−1)
2 =

(r+1)
2 . With k on-disk levels, the total disk write rate is (r+1)

2 kw0.

Therefore, when a chunk of data is written from the write buffer to disk, (r+1)
2 k chunks of data on

the disk will be updated accordingly. As a result, the corresponding data kept in the buffer cache,
if any, have to be invalidated, causing cold misses for later accesses and performance churns as we
have presented in Section 1.

2.3 Existing Solutions

To effectively use buffer caching with LSM-tree, researchers have proposed and implemented sev-
eral methods. We briefly introduce three representative solutions and their limits as follows.

Key-Value store cache: This solution is to build a key-value store in DRAM on top of the
LSM-tree [2]. As shown in Figure 5, the Key-Value store cache is an independent buffer in memory

ACM Transactions on Storage, Vol. 14, No. 2, Article 15. Publication date: April 2018.



15:6 D. Teng et al.

Fig. 5. Basic structure of an LSM-tree with a Key-Value store cache: (1) key-value store is an independent
buffer cache in DRAM without any address index to the source on the disk. (2) “Eager” compactions are
conducted to maintain a fully sorted LSM-tree.

Fig. 6. Basic structure of an LSM-tree with a dedicated server to do compaction: (1) Recently compacted
data blocks are preloaded to the buffer cache, assuming they have high locality. (2) “Eager” compactions are
conducted to maintain a fully sorted LSM-tree.

without any address indexing to the data source on disks [25]. For a read access, it first checks
the key-value store and hopes to have a fast access for a hit. Otherwise, it checks the LSM-tree,
from where the data will be retrieved. This approach would reduce the amount of accesses to the
LSM-tree or even bypass it. Since the in-memory key-value store is an independent buffer of the
LSM-tree, it will not be interfered by the frequent reorganizations of the data in the LSM-tree.
However, the key-value store would not be efficient for range queries and for accessing data with
high spatial locality due to its nature of random stores and high efficiency for random accesses.
Even though some Key-Value store data structures like skip-list or B+ tree support range queries,
on-disk data still need to be loaded, since the in-memory Key-Value store cache may only contain
partial dataset and it is independent on the on-disk data structure.

Dedicated compaction servers: This method is to use dedicated servers to conduct com-
pactions, where the compacted datasets are kept in memory in these servers to be used to replace
datasets in the buffer cache of users with an algorithm named Incremental Warming up algorithm
[1]. This method attempts to reduce the LSM-tree induced misses by warming up the buffer cache
in this way. As shown in Figure 6, all compactions are offloaded to a dedicated server, and after
a compaction is conducted to merge C1 and C2 together, the newly generated blocks containing
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Fig. 7. Basic structure of an SM-tree: (1) Data blocks in the buffer cache are directly indexed to the data
source on the disk. (2) Each level of LSM-tree is not fully sorted. This type of compaction is called “Lazy”
compaction.

objects a andb then be used to replace the original data blocks in the buffer cache of the user server
as a warming up process. The effectiveness of the dedicated server approach depends on the ability
to identify specific compacted datasets with high locality. It is based on an assumption that newly
compacted datasets would exhibit high locality of data accesses if they share common key ranges
with data in the buffer cache. Having conducted experiments, we show that this assumption may
not apply for workloads of whom not all reads lie in the hot range, thus, this approach may not be
always effective.

Stepped-Merge algorithm (SM-tree in short): This algorithm is proposed to balance the
tradeoff between compaction I/O and search cost for data warehouses [14]. Similarly to LSM-
tree, SM-tree also organizes data into a multilevel structure of exponentially increasing sizes and
compacts data with sequential I/Os. However, data objects in a level are not fully sorted and only
be read out and sorted when they are moved to the next level. As shown in Figure 7, data blocks
containing data objects a, b, and c are loaded in the buffer cache. When C1 is full and the data in
it are merged together with a merge sort. The merged data are then be appended to C2 without
merging with the data that already exist in C2. As a result, the data block containing object b will
not be invalidated. In fact, it will only be invalidated whenC2 becomes full and is sorted. Thus, the
amount of compactions and the pace of cache invalidations can be reduced significantly. However,
SM-tree may reduce the query performance in two ways. First, data in each level are not fully
sorted, such that one range query conducted on one level may need multiple disk seeks. As a re-
sult, the range query performance of SM-tree is low. Second, for workloads with a large portion of
repeated data, the entire database size can be unnecessarily large, since the obsolete data cannot
be abandoned by compactions timely.

The goals of our work is to best utilize buffer cache for fast accesses of both random and range
queries and to best utilize the merit of disk for long sequential accesses of range queries. The goals
should be accomplished under the basic LSM-tree structure.

2.4 Our Solution

The basic idea of LSbM-tree is to add an on-disk compaction buffer to minimize frequent cache
invalidations caused by compactions. The compaction buffer directly maps to the buffer cache
and maintains the frequently visited data in the underlying LSM-tree but is updated at a much
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Table 1. Parameters Explanation

variable description

ti latency of checking the index of one sorted table
tb latency of checking the bloom filter of one block
tm latency of reading one block from buffer cache
ts latency of one disk seek
td latency of reading one block from disk
f fault rate of the bloom filter test
h percentage of blocks read from buffer cache
n number of sorted tables checked by one query
b number of blocks read out by one range query

lower rate than the compaction rate. LSbM-tree directs queries to the compaction buffer for the
frequently visited data that will be hit in the buffer cache and to the underlying LSM-tree for others
including long-range queries. In short, using a small size of disk space as compaction buffer, LSbM-
tree achieves a high and stable performance for queries by serving frequently data accesses with
effective buffer caching, while retaining all the merits of LSM-tree for write-intensive workloads.

We have implemented a prototype of LSbM-tree based on LevelDB [12], a widely used LSM-tree
library developed by Google, and conducted extensive experiments with Yahoo! Cloud Serving
Benchmark (YCSB) [9]. We show that with a standard buffer cache and a hard disk storage, our
LSbM-tree implementation can achieve 2x performance improvement over LevelDB and signifi-
cantly outperforms other existing solutions.

3 SYSTEM DESIGN

The interference from compactions to buffer cache in LSM-tree is caused by the re-addressing of
cached objects on the disk. Considering the root of this problem, we aim to control and manage the
dynamics of the compactions of an LSM-tree. Ideally, the negative impact to buffer cache caused
by compactions can be minimized at a very low cost.

Before introducing how LSbM-tree effectively keeps buffer cache from being invalidated by
compactions, let us consider why LSM-tree needs to maintain a sorted structure on each level. In
an LSM-tree, any queries will be conducted level by level. There may exist multiple versions of the
same key at different levels, of which only the newest version is valid. Since the upper level contains
more recent data, queries are conducted from upper levels to lower levels. The data in each level
may belong to one or multiple sorted tables. The key ranges of those sorted tables may overlap
with each other, and thus all of them need to be checked separately. For random data access, data
object will be returned immediately once a matched key is found. Even though bloom filter can
help avoid unnecessary block accesses, when the number of sorted tables in each level increases,
the overhead of checking bloom filters and reading false blocks caused by false bloom filter tests
becomes significant. For range query, all sorted tables will be searched and all data objects covered
by the requested key range will be read out and merged together as the final result. Querying one
level with multiple sorted tables may need multiple disk seeks. Therefore, the number of sorted
tables in each level needs to be limited.

The latencies of one random access and one range query can be estimated by Formulas (1)
and (2), and the parameters in those formulas are explained in Table 1. As shown in Formula (1),
the latency of one random access comes from two types of operations: checking the indices and
bloom filters to locate the data block containing the requested data object and reading the target
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data block. On average, one index check and one bloom filter check are needed to check one sorted
table. Thus the latency of checking all sorted tables is n × (ti + tb ). Among all the retrieved blocks,
h, the hit ratio, of 1 data block is retrieved from the in-memory buffer cache, and the latency for
this part is h × tm . The rest 1 − h of 1 data block are retrieved from disk, which needs one disk
seek ts and one disk block read td , and the latency for this part is (1 − h) × (ts + td ). Furthermore,
a positive bloom filter test does not guarantee that the target object can be found in the data blocks
whose bloom filter test is passed, (n − 1) × f unnecessary block accesses might be involved, and
1 + (n − 1) × f blocks are read in total. As shown in Formula (2), the latency of one range query
also comes from two types of operations: checking the indices to locate the blocks covered by the
requested key range and reading those blocks from the buffer cache or the disk. For simplicity,
we assume that exactly one disk seek is needed to retrieve the data in one sorted table covered
by the requested key range, and all the requested blocks of one query can only be loaded from
either the buffer cache or the disk. For range query, one index check is needed for each sorted
table and bloom filter cannot be used to skip sorted tables, such that the latency of locating disk
blocks in all sorted tables is n × ti . For the queries of which the requested blocks can be found in
the buffer cache, the latency of loading all requested blocks is h × b × tm . For the queries of which
the requested blocks can only be retrieved from the disk, besides the latency to load b disk blocks
from the disk, one disk seek is also needed for each checked sorted table. Thus the total latency is
(1 − h) × (n × ts + b × td ),

Latencyr andom = n × (ti + tb ) + (h × tm + (1 − h) × (ts + td )) (1 + (n − 1) × f ), (1)

Latencyr anдe = n × ti + (h × b × tm + (1 − h) × (n × ts + b × td )). (2)

In reality, especially for a hard disk drive, the latency of a disk seek, ts , can be orders of magni-
tudes larger than the latencies of any other operations, such as the latencies of reading one block
from disk (td ) and memory (tm ), and the latencies of checking in-memory indices (ti ) and bloom
filters (tb ). Thus the latencies of those operations can be negligible. Furthermore, when the re-
quested range of one range query is relatively small, the latencies of loading b blocks from cache
(b × tm ) or disk (b × td ) can also be negligible. Therefore, when the values of ti , tb , tm , td ,b × tm ,
andb × td are all set to 0, the throughput, which is the reciprocal of the latency, of random accesses
and range queries can be approximately calculated by Formulas (3) and (4),

Throuдhputr andom ≈
1

(1 − h) × ts × (1 + (n − 1) × f )
, (3)

Throuдhputr anдe ≈
1

(1 − h) × n × ts
. (4)

Formulas (3) and (4) show a tradeoff between a highly sorted structure and less sorted
structure. Queries can benefit from a fully sorted structure of an LSM-tree level, i.e., a smaller n
in Formulas (3) and (4). However, maintaining such a fully sorted structure needs to frequently
conduct compactions, which may in turn invalidate the cached data objects, i.e., decrease the hit
ratio, h, in Formulas (3) and (4). This tradeoff motivates us to find a way to maintain a fully sorted
structure of the LSM-tree and, at the same time, keep the buffer cache from being invalidated by
compactions. The basic idea of our design is to keep two data structures on disk. One data structure
contains the whole dataset, and the data in each level are fully sorted as a conventional LSM-tree.
We call it the underlying LSM-tree. Another data structure contains only the frequently visited
data, and the data in it are not frequently updated by compactions. We call it the compaction buffer.

Figure 8 shows the structure of a three-level LSbM-tree. The left of the figure is the underlying

LSM-tree, which consists of four levels C0, C1, C2, and C3. The middle box is the buffer cache in
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Fig. 8. The basic structure of an LSbM-tree.

DRAM, which is used to cache data requested by conducting queries. The compaction buffer is in
the right corner of the figure, which is on disk. Data in the compaction buffer are also stored as
a multiple level structure. The data in each level consist a list of sorted tables. We call each list a
compaction buffer list. We denote the compaction buffer list of level i as Bi , and the jth sorted table

in Bi as B j
i . B0

i contains the most recent data in Bi . Figure 8 shows a compaction buffer with three
compaction buffer lists. Bi (1 ≤ i ≤ 3) contains frequently visited datasets of level i but is updated
in a very low rate to enable effective caching.

In level i of an LSbM-tree, read requests are dispatched to Bi for frequently visited data that are
highly possible to be hit in the buffer cache and to Ci for others. As shown in Figure 8, objects a,
b, and c are requested. Among them, a and b are read from the buffer cache, which are indexed in
B1 and B2, respectively. Object c is loaded from C3 of the underlying LSM-tree.

4 COMPACTION BUFFER

The compaction buffer maintains only the frequently visited data that are not frequently updated
by compactions. Thus, the compaction buffer needs to be able to selectively keep only the fre-
quently visited data in it and maintains the stability of them. In this section, we present our buffered

merge algorithm that associates with LSM-tree to prepare data for the compaction buffer, and a
trim process to keep only the frequently visited data in the compaction buffer. The disk space used
by compaction buffer is limited and there’s no additional I/O cost for the compaction buffer con-
struction. Next, we will present the detailed operations to build the compaction buffer.

4.1 Buffered Merge

Figure 9 presents an illustration of how a buffered merge works. When Ci is full, all its data will
be merged intoCi+1 with a merge sort. At the same time, it will also be appended into Bi+1 as B0

i+1.

Note that B0
i+1 is built with the files of Ci which already exist on disk. Therefore, no additional

I/O is involved. The data in B0
i+1 which were formerly in Ci will not be updated by compactions.

Furthermore, B0
i+1 contains all the data in Bi but are fully sorted, thus it becomes a better candidate

to serve queries compared to Bi . As a result, the sorted tables in Bi become unnecessary, which
will be removed from the compaction buffer and then deleted from disk.
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Fig. 9. An illustration of the buffered merge.

When a chunk of repeated data are written into level i + 1, the same amount of obsolete data in
Ci+1 are abandoned by compactions. However, the counterparts of those data in Bi+1 also become
obsolete but cannot be abandoned, since the data in a compaction buffer will not be compacted once
appended. Those obsolete data take extra disk and memory space. Therefore, a compaction buffer
list is not suitable for levels with repeated data inserted. In LSbM-tree, the existence of repeated
data in level i + 1 can be easily detected by comparing the size of the data compacted intoCi+1 and
the size ofCi+1 itself. If the size ofCi+1 is smaller than the data compacted into it, then there must
exist repeated data. When repeated data are detected, LSbM-tree freezes Bi+1. WhenCi+1 becomes
full and is merged down to next level, Bi+1 is unfrozen and continues serving as the compaction
buffer list of Ci+1.

With the buffered merge, two data structures are created on level i:Ci and Bi . Data inCi are fully
sorted but are frequently updated by compactions, while data in Bi are not updated frequently but
are not fully sorted. Frequently accessed data blocks in buffer cache are directly indexed in Bi ,
where infrequent update prevent data blocks in the buffer cache from being invalidated. In this
way, the compaction buffer works as a buffer to hide the severe buffer cache invalidations caused
by conducting compactions on the underlying LSM-tree. This leads to its name, the compaction

buffer, and also the name of the merge algorithm, buffered merge algorithm.
When Ci is full and merged into Ci+1, data in Bi are deleted and the reads served by Bi are

transferred to B0
i+1. Note that Bi contains the frequently visited data and most of its data blocks

are loaded in the buffer cache. A sudden deletion of Bi will cause a dramatic hit ratio drop and
performance churn. To slow down the transfer process, we develop the buffered merge algorithm
associated with a gear scheduler merge algorithm first introduced in bLSM-tree [20]. In bLSM-tree,
data in level i (0 ≤ i < k ) belong to two sorted tables, Ci and C ′i . When Ci is full, its data will be
moved to C ′i and start to be merged into Ci+1. Meanwhile, Ci becomes empty and continues to
receive data merged down from level i − 1(i > 0) or inserted by user applications (level 0). In each
level, bLSM-tree defines two parameters, inproдr ess and outproдr ess , to regulate the progresses of
merging data into Ci and moving data out from C ′i . For simplicity, we simplify this regulation by
fixing the total size ofCi andC ′i as a constant, which is the maximum size of level i, Si . As the left
side of Figure 10 shows, when a chunk of data are compacted into Ci , the same amount of data
in C ′i are compacted into Ci+1. As a result, when Ci is full, C ′i must be empty, and the data in Ci

can be moved to C ′i and start over. With this design, the compactions conducted on one level are
driven by the compactions conducted on its upper level and eventually driven by the insertion
operations conducted on the write buffer, C0. As a consequence, data can be inserted into C0 with
a predictable latency [20].
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Fig. 10. The detailed operations of the buffered merge.

We adapted this merge algorithm in our buffered merge operations. As shown in Figure 10, the
ith(0 ≤ i < k ) level of the compaction buffer is also divided into two parts: Bi and B′i . Algorithm 1
describes the buffered merge algorithm based on bLSM-tree’s merge algorithm. The additional
operations of buffered merge compared to bLSM-tree’s merge are highlighted with bold font. One
compaction thread monitors the size of level 0 and data are inserted into C0 by another thread.
Once the total size of level 0 (|C0 | + |C ′0 |) exceeds the limited size of level 0, S0, compactions are
triggered (lines 2 and 3). Compactions are conducted level by level until the last level or a non-
full-sized level is encountered (lines 5 and 6). For a specific level i (0 ≤ i < k ), if C ′i is empty, data
will be moved fromCi intoC ′i . Meanwhile, data in Bi also be moved into B′i (lines 8- and 9). Those
data movements do not need any I/O operations but only index modifications. Note that B′i only
contains the frequently visited data of level i , thus the size of B′i is a variable whose value is smaller
than Si . One parameter S ′i is used to record the size of B′i when data are initially moved into it (line

10). An empty sorted table B0
i+1 is created in Bi+1 to receive data moved fromC ′i (line 11). After all

those preparations,C ′i is guaranteed to be nonempty. One file is picked out fromC ′i as fa , and then
fa is merged into Ci+1 with a merge sort (lines 12–16). The basic compaction units for different
LSM-tree implementations are different. Here we inherit the implementation of LevelDB which
compacts one file down to next level in each compaction. Instead of being deleted from disk, fa
then be appended into B0

i+1 (line 17). The removal of the data in B′i keeps the same pace as the

removal of the data in C ′i . In another word,
|B′

i
|

S ′
i

equals to
|C ′

i
|

Si

during the entire merge round. To

achieve this,B′i removes the files with the smallest maximum keys after each compaction to remove
the same portion of data asC ′i does in key order (lines 18–20). Different from the underlying LSM-
tree, removing a file from the compaction buffer has a different meaning. A file removed from the
compaction buffer will be marked as removed . All its indices except the minimum and maximum
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ALGORITHM 1: Buffered Merge

1 while true do

2 if |C0 | + |C ′0 | < S0 then

3 Continue;

4 for each level i from 0 to k − 1 do

5 if |Ci | + |C ′i | < Si then

6 Break;

7 if |C ′i | = ∅ then

8 Move data from Ci into C ′i ;

9 Move data from Bi into B′i ;

/* record the initial size of B′i */

10 S ′
i
← |B′

i
|;

11 Create an empty sorted table in Bi+1 as B0
i+1;

12 fa ← pick one file from C ′i ;

/* merge the files with overlapped key ranges */

13 Fb ← all files in Ci+1 whose key range overlaps [min( fa ),max ( fa )] ;

14 Fc ← merge fa and Fb with a merge sort;

/* install the result */

15 Remove fa from C ′i ;

16 Replace Fb with Fc in Ci+1;

17 Append fa to B0
i+1;

/* gradually remove the files in B′i */

18 while
|B′

i
|

S ′
i

>
|C ′

i
|

Si
do

19 fd ← file in B′
i

with the smallest maximum key;

20 Remove fd from B′
i
;

keys will be removed from the memory, and all its data will be deleted from the disk. This is
specifically designed for the query correctness, which will be discussed in Section 5.

For buffered merge, if all data appended are kept in the compaction buffer, the entire database
size will be doubled. Further, as discussed in Section 3, conducting queries on infrequently visited
data is more sensitive to the number of sorted tables being searched, since more disk seeks might
be involved. Thus, those infrequently visited data should be removed from the compaction buffer.
The queries conducted on them should be served by the underlying LSM-tree, which contains far
less sorted tables in each level. In next section, we will explain how compaction buffer selectively
keeps only the frequently visited data in it.

4.2 Trim the Compaction Buffer

During running time, the data in the compaction buffer continue to be evaluated to determine
whether they are qualified to be kept in the compaction buffer. We call this process a trim process.
The basic operation unit of the trim process is also a file. Algorithm 2 shows how LSbM-tree trims
the compaction buffer to selectively keep only the files that contain frequently visited data in it.

The compaction buffer is trimmed level by level. For level i (0 < i ≤ k ), B0
i is newly appended to

Bi and the frequently accessed data blocks in it are still actively being loaded into the buffer cache,

and thus it should not be trimmed. Any other sorted tables need to be trimmed. For each file f in B j
i ,
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ALGORITHM 2: Trim the Compaction Buffer

1 for each level i (0 < i ≤ k ) do

/* selectively keep the files in Bi */

2 for each sorted table B
j
i (j > 0) do

3 for each file f in B
j
i do

4 total ← number of blocks in f ;

5 cached ← number of cached blocks in f ;

6 if cached
total

< threshold then

7 Remove f from B
j
i ;

it is removed if it does not contain frequently visited data. In LSbM-tree, whether one file contains
frequently visited data or not is measured by the percentage of its blocks cached in the buffer
cache. The number of cached blocks for one file can be collected by an integer counter cached ,
and it will be increased once one of its blocks is loaded into buffer cache, and decreased once one
of its blocks is evicted from buffer cache. Those operations are lightweight with little overhead.
When the percentage of cached blocks is smaller than a threshold, this file will be removed from
the compaction buffer (lines 4–7). The trim processes are conducted by an independent thread
periodically. The interval time can be adjusted as an optimized parameter.

4.3 File Size

The size of the f ile is a key factor for both the underlying LSM-tree and the compaction buffer.
It defines the granularity of compactions and trim processes. As described in Algorithm 1, data
are compacted down one file at a time. With a file size s , compacting S data from level i to level
i + 1 needs up to (r + 1) S

s
input operations to load the data into the memory and another (r + 1) S

s

output operations to write the compacted data on to disk. A larger s brings a smaller number
of I/O operations and higher compaction efficiency. Thus the file size of the underlying LSM-
tree should not be too small. However, in the compaction buffer, a larger file size causes a lower
precision of frequently visited data identification in the trim process. That is because the file with
a larger key range has a higher possibility to contain both frequently and infrequently visited data.
Furthermore, the key ranges of the files in the compaction buffer, which formerly belong to the
upper level of the underlying LSM-tree, can be r times larger than the files in the underlying LSM-
tree at the same level. As will be discussed in Section 5, removing one file from Bi may stop not
only this file but also another r − 1 file in Bi whose key ranges overlap with the removed file from
being used to serve queries. As a result, once one file is removed from Bi , queries conducted on up
to r files can be redirected. Since all these files contain frequently visited data, a big performance
drop may be caused. Thus the file size of the compaction buffer should not be too big.

The underlying LSM-tree and the compaction buffer requires different optimized file sizes, but
all files of compaction buffer are created by the underlying LSM-tree. To solve this problem, we
add an additional layer in the sorted table’s index structure between the sorted table layer and file
layer, super-file. Each super-file mapping to a fixed number of continuous files, and all these files
stored in a continuous disk region. A super-file is the basic operation unit for the underlying LSM-
tree while a file is the basic operation unit for the compaction buffer. With this design, even though
all files of compaction buffer are created by the underlying LSM-tree, these two data structures can
pick their own appropriate file sizes accordingly.
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4.4 The Effectiveness of the Compaction Buffer

Our experiments in Section 6 will show that, the harmful buffer cache invalidations are minimized
or even eliminated by the compaction buffer. Two reasons contribute to its effectiveness. First,
instead of mapping to the LSM-tree, the buffer cache directly maps to the compaction buffer that
is built by appending operations without changing the data addresses. Thus, the frequency of data
updates in the compaction buffer is significantly reduced compared with that of the LSM-tree.
Second, as the data in levelC ′i of the LSM-tree is merged to its next level, compaction buffer list B′i
can start to transfer the reads on it to next level. The transferring is carefully and gradually done
to minimize the chance of harmful cache invalidations.

The compaction buffer also adapts to a variety of workloads. For workloads with only intensive
writes, no data will be loaded into the buffer cache and all appended data in the compaction buffer
will be removed by the trim process. For workloads with only intensive reads, the compaction
buffer is empty, since data can only be appended into the compaction buffer by conducting com-
pactions. For workloads with both intensive reads and writes, loaded data in the buffer cache can
be effectively kept by the compaction buffer while the underlying LSM-tree retains all the merits
of a conventional LSM-tree.

4.5 Disk I/O and Storage Cost

Building the compaction buffer does not involve any additional I/O operations. As described in
Section 4.1, all files used to build the compaction buffer already exist on disk. Only the indices of
sorted tables are modified. Therefore, the I/O cost of building the compaction buffer is negligible.

With the trim process, all files left in the compaction buffer must contain a large portion of
data blocks that are loaded in the buffer cache. Therefore, the size of the compaction buffer is
determined by both of the buffer cache size and the read/write workloads. In general, the sizes of
the buffer cache and the frequently visited data are relatively small. Thus, the additional disk space
cost is low and acceptable which is proven by experiments in Section 6.5.

5 QUERY PROCESSING

With the buffered merge algorithm, the on-disk data of LSbM-tree consists of two data structures:
the underlying LSM-tree that contains the entire dataset and the compaction buffer which contains
only the frequently visited dataset. Those two data structures work together harmoniously and
effectively to serve queries.

Algorithm 3 describes the steps of one random data access. Random data accesses are conducted
level by level. While searching one level i (0 < i ≤ k ) with a compaction buffer list, the indices and
bloom filters of Ci will be checked first to validate whether this key belong to this level (lines
3–10). If the key is judged not belonging to Ci , then it is unnecessary to further check the sorted
tables in Bi , since it is a subset ofCi . Otherwise, the sorted tables in Bi will be checked one by one
(lines 12–23). Once a removed file whose key range covers the target key is encountered during
this process, the operation of checking Bi is stopped immediately (lines 15 and 16). That is because
the newest version of the target key may have been removed from Bi , and an obsolete version
may be returned by mistake. If the target key is found in any one sorted table in Bi , then the target
key and value will be returned (lines 17–23). Otherwise, the target block inCi will be read out and
serve the read (lines 24 and 25). If the target key is not found in any levels, then a not found sign
is returned.

Even though each compaction buffer list contains multiple sorted tables, the indices and bloom
filters of the underlying LSM-tree can help skip the levels that do not contain the target key. Thus,
only the compaction buffer list of the level that may contain the target key needs to be checked.
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ALGORITHM 3: Random Access

1 Function RandomAccess(ky)

2 for each level i from 0 to k do

3 f ← file in Ci where ky ∈ [min( f ),max ( f )];

4 if f not found then

5 Continue;

6 b ← block in f where ky ∈ [min(b),max (b)];

7 if b not found then

8 Continue;

9 if ky not pass the Bloom Filter check of b then

10 Continue;

/* check the compaction buffer first */

11 for each sorted table B
j
i from B0

i do

12 f ′ ← file in B
j
i where ky ∈ [min( f ′),max ( f ′)];

13 if f ′ not found then

14 Continue;

15 if f ′ is marked as removed then

16 Break;

17 b ′ ← block in f ′ where ky ∈ [min(b ′),max (b ′)];
18 if b ′ not found then

19 Continue;

20 if ky not pass the Bloom Filter check of b ′ then

21 Continue;

22 if ky is found in b ′ then

23 Return isFound;

/* served by Ci */

24 if ky is found in b then

25 Return isFound;

26 Return notFound;

The number of sorted tables each compaction buffer list has varies from 0 to r and r
2 on average.

Further, the target key can be found in any of the r
2 sorted tables and then be returned. Therefore,

in LSbM-tree, the number of additional sorted tables that need to be checked for each random
access is only about r

4 .
The steps of conducting range queries are listed in Algorithm 4. For simplicity, we assume the

requested key range can be covered by only one file in each sorted table. While searching level
i (0 < i ≤ k ) with a compaction buffer list, the index ofCi will be checked first. If the requested key
range does not overlap any files inCi , then continue searching other levels (lines 3–5). Otherwise,
the sorted tables in Bi need to be checked first. While checking sorted tables in Bi , a file queue F
is maintained to record all the files in Bi whose key ranges overlap with the requested key range
(lines 8–14). Similarly to random data access, we stop checking Bi and clear the file queue F once
a removed file is found overlapping the requested key range (lines 11–13), since Bi may contain
incomplete requested data. Finally, if F is not empty after checking Bi , the requested data in the
files of F will be read out. Otherwise, the requested data in the file f fromCi will be read out (lines
15–19).
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ALGORITHM 4: Range Query

1 Function rangequery(rдe)

2 for each level i from 0 to k do

3 f ← file in Ci where rдe ∩ [min( f ),max ( f )] � ∅;
4 if f not found then

5 Continue;

/* check the compaction buffer first */

6 F ← ∅;
7 for each sorted table B

j
i from B0

i do

8 f ′ ← file in B
j
i where rдe ∩ [min( f ′),max ( f ′)] � ∅;

9 if f ′ not found then

10 Continue;

11 if f ′ is marked as removed then

12 F ← ∅;
13 Break;

14 Append f ′ in F ;

15 if F = ∅ then

/* served by Ci */

16 Read out data objects from f in range rдe;

17 else

/* served by Bi */

18 for each file f ′ in F do

19 Read out data objects from f ′ in range rдe;

Those two algorithms simplify the queries conducted on LSbM-tree by assuming there are only
Ci and Bi in level i (0 < i < k ). However, one level of LSbM-tree may contain four components:Ci ,
C ′i , Bi , and B′i . For this case, the combination of C ′i and B0

i+1 is treated as a whole, since data are

moved fromC ′i into B0
i+1, and their key ranges complement each other. The data in B′i are a subset

of data in this combination. When conducting queries on level i , Ci and its compaction buffer list
Bi will be checked first, and then the combination ofC ′i and B0

i+1, and its compaction buffer list B′i
are checked. Both follow the steps listed in Algorithms 3 and 4.

6 EXPERIMENTS

We compare the query performance results among LevelDB, SM-tree, bLSM-tree, bLSM-tree with
Key-Value store cache, bLSM-tree with incremental warming up, and LSbM-tree with experiments
in this section.

6.1 Experimental Setup

Our LSbM-tree implementation is built with LevelDB 1.15 [12]. It implements the buffered merge
in the LevelDB code framework. We have also implemented the Stepped-Merge algorithm [10,
14], bLSM-tree, the incremental warming up method [1], and K-V store caching method used by
Cassandra [2] as comparisons.

The hardware system is a machine running Linux kernel 4.4.0-64, which has two quad-core Intel
E5354 processors, 8GB main memory. The maximum size of the DB buffer cache is set to 6GB. The
rest memory space is shared by the indices of sorted tables, bloom filters, OS buffer cache, and the
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operating system. Two Seagate hard disk drives (Seagate Cheetah 15K.7, 450GB) are configured as
RAID0 as the storage for LSM-tree. The HDD RAID is formatted with ext4 file system.

The size of level 0 is set to 100MB. With a size ratio r = 10, the maximum size Si of level 1,
2, and 3 is 1GB, 10GB, and 100GB, respectively. The file size of tests conducted on LSbM-tree is
set to 2MB, which is the default setting of LevelDB. We define a super-file contains r files. With
r = 10, the size of a super-file for LSbM-tree is 20MB. For tests conducted on any other LSM-tree
variants, the file size is set to 20MB. The size of a block is set to 4KB that is equal to the disk page
size. The bloom filter is set to 15-bit per element. The key-value pair size is set to 1KB, which is
the default value of YCSB and is a common case in industry environment [4, 9]. The interval of
the trim processes is set to 30s, and a file can be kept in the compaction buffer only if 80% of its
blocks are cached in the buffer cache.

6.2 Workloads

All writes are uniformly distributed on a dataset with 20GB unique data. With this write workload,
all writes are updates on existing keys, which are randomly picked from the entire key space. Levels
1 and 2 will be full and merged down to next level after inserting 1GB and 10GB data, respectively.
The maximum number of sorted tables that B1 and B2 have are 10, which is the size ratio r . On
the other hand, all inserted data except the first 20GB data are repeated data for level 3. Those
repeated data will be detected while conducting compactions on C3. As a result, B3 is frozen.

The read workloads in our experiments are based on Yahoo! Cloud Serving Benchmark (YCSB) [9],
which provides a number of workload templates abstracted from real-world applications. We have
built two workloads which are RangeHot and Zipfian workloads. RangeHot workload characterizes
requests with strong spatial locality, i.e., a large portion of reads is concentrated in a hot range. In
our test, 3GB continuous data range is set as the hot range, and 98% of the reads requests lie in
this range. For Zipfian workload, the request frequency of tuples follows the Zipf law. In our tests,
the Zipfian constant is set to 0.999. These workloads is generated at runtime with the db_bench

utility provided in the LevelDB package.
We conducted a series of experiments to evaluate the random read and range query performance

of LSbM-tree and other LSM-tree variants under intensive writes with the workloads given above.
The write throughput for all tests is 1,000 OPS (operations per second). All writes are sent via a
single thread and any other random reads and range queries are sent by another eight threads.
During these experiments, the DB buffer cache hit ratio, read throughput, database size and other
statistics are measured online and stored to a log file on the disk. Each test is conducted for 20,000s.

6.3 Performance of Random Reads

6.3.1 RangeHot Workloads. We have evaluated LSbM-tree on its random read performance
by RangeHot workload with intensive writes. We also conducted three tests on bLSM-tree, Lev-
elDB, and bLSM-tree with incremental warming up for comparisons. Figure 11 shows the hit ratio
changes (vertical bar) and DB buffer cache usage rate (dashed line) as time passes (horizontal bar)
of all these tests.

bLSM-tree: As shown in Figure 11(a), the cached data in DB buffer cache are periodically in-
validated by compactions in bLSM-tree and the hit ratio goes up and down. The big hit ratio drops
periodically observed in every 1,000s are caused by the compactions conducted from C ′1 to C2.
When |C2 | increases from 0 to S2, the invalidations become more and more severe.

LevelDB: LevelDB maintains only one sorted table at each level. Two merge operations exist
on level i (0 < i < k ) simultaneously: merge from Ci−1 to Ci and merge from Ci to Ci+1 [12, 20].
The hit ratio also goes up and down following the similar pattern of the bLSM-tree (Figure 11(b)).
However, the hot range in level 2 is updated every 2,000s instead of 1,000s as bLSM-tree does. This
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Fig. 11. Hit ratio changes of tests on RangeHot workloads.

phenomenon is caused by the Non-uniformity of key density which was discussed in detail in a
previous work [16].

LSM-tree with incremental warming up: We simulated the incremental warming up algo-
rithm on a single machine in the following way: Before the newly compacted blocks are flushed
from memory, the blocks in the buffer cache that will be evicted in this compaction will be replaced
with the newly generated blocks whose key ranges overlap with them [1]. This approach is based
on an assumption that newly compacted blocks will also be frequently visited if they overlap with
any blocks in the buffer cache. However, this assumption is true only if all overlapped ranges be-
long to the hot range. Let us assume that one key-value pair of level i (0 ≤ i < k ) is loaded into the
buffer cache by a read operation. The block containing that pair will be marked as Hot when it is
being compacted down to the lower level. Since up to r blocks in level i + 1 share the same key
range with that block, up to r + 1 newly generated blocks will be loaded into buffer cache after
this compaction. Furthermore, those r + 1 blocks will cause the loading of another (r + 1) ∗ (r + 1)
blocks when they are being compacted to level i + 2. Therefore, one read operation on level i will
load as many as (r + 1)k−i blocks into buffer cache. If this read is conducted inside the hot range,
then the incremental warming up can help pre-fetch hot data into buffer cache. Otherwise, the in-
cremental warming up will load even more infrequently visited data blocks into buffer cache and
continuously evict the frequently accessed data blocks. Figure 11(c) shows the change of the buffer
cache hit ratio over time for test on bLSM-tree with incremental warming up. With 2% of reads
lie out of the hot range, the hit ratio goes up and down periodically. When the compaction is con-
ducted on the hot range, the hit ratio increases sharply because of a pre-fetching effect discussed
above. However, those data blocks in the buffer cache then be gradually evicted by the infrequently
accessed data blocks loaded by the incremental warming up process. This experiment shows that
the incremental warming up method may not work for certain workloads.

LSbM-tree: As shown in Figure 11(d), the hit ratio of LSbM-tree keeps steady and high. Note
that all data compacted to level 3 are repeated data, and thus the compaction buffer list of level 3
(B3) is frozen. As a result, the buffer cache is still invalidated when data are compacted fromC ′2 to
C3. However, since the data in B′2 are gradually deleted as described in Section 4.1, part of the hot
data is still kept in the buffer cache by B′2, and the invalidation issue is mitigated.

Figure 12 compares the average buffer cache hit ratios and throughputs of bLSM-tree, LevelDB,
bLSM-tree with incremental warming up, and LSbM-tree on RangeHot workload. It shows that
LSbM-tree achieves a much higher buffer cache hit ratio and random read throughput than other
LSM-tree variants on RangeHot workloads with intensive writes. As measured by Formula (3), a
little increase of hit ratio (14%) brings a 1.98X throughput increase.
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Fig. 12. Performance of tests on RangeHot workloads.

Fig. 13. Hit ratios of tests on Zipfian workloads.

6.3.2 Zipfian Workload. We also evaluated the performance of bLSM-tree and LSbM-tree by
the Zipfian workloads. Compared to the RangeHot workloads, the read distribution of Zipfian
workloads highly skews on relatively smaller ranges, and most part of the entire data range are
infrequently visited. As consequences, the buffer cache invalidation issue is less severe. As shown
in Figure 13(a), the buffer cache is invalidated periodically. However, the drop scale is much smaller
and the reload process is much shorter. In contrast, LSbM-tree can still gain a better performance
by keeping the hot data in buffer cache from being invalidated. Figure 13(b) shows the changes
of hit ratios overtime for tests on LSbM-tree. The hit ratios keep steady and high. The average
throughput on Zipfian Workloads is 1,947 QPS (queries per second) for bLSM-tree and 2,048 QPS
for LSbM-tree.

6.4 Performance of Range Queries

To evaluate the range query performance of LSbM-tree and other LSM-tree variants under inten-
sive writes, we perform another set of tests with bLSM-tree, SM-tree, bLSM-tree with additional
K-V store cache, and LSbM-tree. Each read operation follows the RangeHot workload but will read
all the data lie in a 100KB range. The throughput changes over time for all tests are shown in
Figure 14, and the overall throughputs of all tests are given in Figure 15.

bLSM-tree: Compared to random data accesses, the range queries conducted on bLSM-tree
are influenced less by intensive writes (Figure 14(a)). That is because when the buffer cache is
invalidated, the invalidated data can be loaded back to buffer cache by range queries more quickly
than random data accesses, since sequential I/O is much faster on HDD than random I/O. The
throughput is 1,066 QPS.

Key-Value store cache: In this test, a Key-Value store is built on top of the bLSM-tree. Among
the 6GB cache spaces, 3GB is allocated to the Key-Value store cache, and the rest memory space
is allocated to a DB buffer cache. As shown in Figure 14(b), the throughput of the test using an
additional Key-Value store keeps extremely low, which is only 68 QPS on average. It is low because
of two reasons. First, when an additional Key-Value store cache is used, the memory space for buffer
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Fig. 14. Throughputs of tests on range queries.

Fig. 15. Throughput comparisons of range queries.

cache is reduced, which causes capacity misses. Second, the data in the buffer cache will keep being
invalidated by compactions, which causes LSM-tree compaction induced cache invalidations.

Stepped-Merge Method (SM-tree): We also implemented the Stepped-Merge Method. When
the write bufferC0 is full, instead of merging withC1, it will be appended toC1 as a sorted table of
it. When Ci (1 ≤ i < k ) is full, all sorted tables in Ci will be merged together and be appended to
Ci+1. As a result, each level of SM-tree contains 0 to r sorted tables. The range query throughput of
SM-tree is only 228 QPS. It is low because of two reasons. First, when range queries must be served
by disk, conducting range queries on one level with multiple sorted tables may need multiple disk
seeks. Second, with the given write workloads, obsolete data will be piled in level 3 and loaded
into buffer cache by range queries, which reduces the effective buffer cache capacity. As shown in
Figure 14(c), in the first 10,000s, the total number of sorted tables searched for each query increases
and the throughput decreases. At around 10,000s, level 2 becomes full and all its sorted tables are
compacted together as a sorted table of level 3. The total number of sorted tables then decreases,
and the range query throughput increases a little bit. However, due to the shrinking of effective
buffer cache capacity caused by the obsolete data, the throughput becomes extremely low. Thus,
to achieve high performance range queries, the compacted structure of the underlying LSM-tree
must be retained.

LSbM-tree: By contrast, LSbM-tree achieves the best performance. The buffer cache in-
validation issue is further mitigated compared to bLSM-tree and the throughput is 1,134 QPS
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Fig. 16. Database size changes of tests on different LSM-tree variants.

(Figure 14(d)). The sorted structure on underlying LSM-tree can support on disk range queries
efficiently; meanwhile, the compaction buffer can serve fast data accesses by effectively keeping
frequently visited data in the buffer cache.

6.5 Database Size

Among all the tests conducted above, LevelDB, bLSM-tree, SM-tree, and LSbM-tree have different
on-disk data structures, and thus the database size of those LSM-tree variants may differ from each
other. While conducting tests, the realtime database sizes are recorded, and the changes of those
sizes over time can be found in Figure 16.

As data are written in the database, compactions are conducted to merge data from upper levels
to lower levels and eventually stay at the last level. Note that with the given write workloads, all
inserted data to level 3, the last level, are repeated data. In bLSM-tree and LevelDB, when a chunk
of data are compacted into level 3, the same size of obsolete data are deleted during compaction.
Thus the database sizes do not change a lot. However, due to the lazy compaction method of SM-
tree, data will be piled in level 3, and the obsolete data will not be deleted until level 3 is full. As a
result, the database size keeps increasing. Even worse, when one level is full, additional spaces are
needed to merge the entire level together. As shown in Figure 16(c), the database size of SM-tree
bursts periodically. The small bursts observed every 1,000s are caused by compacting sorted tables
in level 1, and the big bursts observed every 10,000s are caused by compacting sorted tables in
level 2.

The database size of LSbM-tree is slightly greater than the bLSM-tree and LevelDB, since the
compaction buffer takes additional space. However, the size of the compaction buffer is limited
due to the trim process. Different from other LSM-tree variants, the database size of LSbM-tree
is also read workload dependent. Figure 16(d) shows the database size changes of LSbM-tree on
RangeHot and Zipfian workloads. For Zipfian workloads, the reads are highly skewed in a smaller
hot range. Thus, most of the data are removed from the compaction buffer during the trim process
and the compaction buffer is relatively smaller.

The average database sizes of bLSM-tree, LevelDB, SM-tree, and LSbM-tree with different read
workloads can be found in Figure 17. It proves that with the given read and write workloads, the
additional space cost of LSbM-tree is very low, which is about 4% more space than that of bLSM-
tree and LevelDB. In contrast, the amount of repeated data due to lazy compaction in SM-tree add
as high as about 50% more disk space.
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Fig. 17. Database sizes of different LSM-tree variants.

7 OTHER RELATED WORK

The key design issues of LSbM-tree have been introduced in our previous work [22]. In this article,
we further discuss the read/write latency model of LSM-tree, and we compare LSbM-tree with
other solutions on more workloads.

To reduce the compaction cost, some production systems only compact data partially in
runtime and run a full compaction during system idle time. In HBase , the former is called minor
compaction, while the latter is called major compaction [3]. However, disabling major compaction
during runtime mainly reduces the compaction of old data. These old data refer to the last level
data in a standard LSM-tree, which are less frequently accessed than new data. Thus, just like
SM-tree, this approach cannot avoid the interference from compactions to buffer caching. In
practice, HBase still suffers low read performance during intensive writes [1].

RocksDB compiles and utilizes several techniques to best utilize the efficiency of flash-based
storage systems like SSD. It adapts the stepped merge algorithm as its universal compaction
method and uses Key-Value cache as an option for certain workloads [10]. However, both Key-
Value cache and stepped merge methods have their limits as discussed in Section 1. VT-tree is an
extension of LSM-tree to avoid unnecessary merges for presorted data [21]. LSM-trie reduces the
write amplification of an LSM-tree with an SM-tree-like merge algorithm and optimizes the ran-
dom data access performance on the multiple sorted tables structure in each level [24]. An FD-tree
is proposed for data indexing on SSDs without random writes, which has a similar idea to LSM-
tree and is enhanced with fractional cascading technique for a low memory usage [15]. However,
a lookup needs multiple disk accesses if the object is not found in the first level. LOCS exploits
the internal parallelism among flash channels to improve SSD-based LSM-trees [8, 23]. cLSM is
an LSM-tree variant supporting scalable concurrency with multi-core processors [11]. WiscKey is
proposed to separate the storage of key and value, which significantly eliminates the write am-
plification issue of LSM-tree compactions on SSD [17]. It exploits the internal parallelism of SSD
and multi-thread to achieve high range query performance even the values of continuous keys
are discretely stored on disk. In contrast, our LSbM-tree is a low cost general solution to solve the
fundamental problem of data caching in LSM-tree.

8 CONCLUSIONS

LSM-tree is effective for write-intensive workloads. However, as both read- and write-intensive
workloads co-exist, the compaction-induced buffer cache invalidations can periodically degrade
cache performance by missing data blocks with high locality. Existing methods to address this
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Fig. 18. LSbM-tree compares with other LSM-tree variants.

issue, such as a KV-store cache to bypass the buffer cache, SM-tree by reducing the compaction
frequency, and others, are effective for certain workloads. There are two limits in these methods.
First, the optimization has been focused on certain workload patterns at the cost of scarifying
performance of other patterns. For example, SM-tree reduces the amount of compaction-induced
cache invalidations by a lazy compaction, but the non-fully-sorted LSM-tree is less efficient for
range queries. KV-store is very effective to frequently random data accesses by building an inde-
pendent cache in DRAM, but it is not effective to range queries. The dedicated compaction server
method is effective as the frequently accessed data are also recently compacted data in LSM-tree
by its warming up process, but this assumption may not always true in practice. Second, KV-store
and the dedicated compaction server methods require additional memory resources.

In this article, we propose LSbM-tree, a low-cost solution by adding a small compaction buffer
on disk, which plays three major roles to fundamentally address the invalidation issue and other
issues of existing methods and to retain all the merits of LSM-tree and other methods. First, the
compaction buffer is selectively and adaptively built and managed, where the data blocks are con-
sistently kept with the ones in the buffer cache. Thus, the LSM-tree-induced invalidations are
minimized and eliminated. Second, LSbM-tree best utilizes both buffer cache and disks for both
random accesses and range queries. Finally, the compaction buffer is only built when it is neces-
sary without computing overhead. Under either read only or write only workloads, the compaction
buffer is adaptively shrunk and disappears eventually. Thus, the additional resource is only related
to a small disk space.

Figure 18 presents a comprehensive comparison among the five representative LSM-tree based
methods by the efficiency of memory cache (y-axis, hit ratios) and by the efficiency of range
queries in disks (x-axis, data access throughput). LSM-tree does well for range queries in disks
but cause compaction-induced cache invalidations to lower the cache performance, while SM-tree
has the opposite performance results. Both KV-store and the Dedicated server methods maintain
a fully sorted LSM-tree structure, thus they retain the high efficiency of range queries on disks.
However, their cache performances are high for certain workloads and suboptimal for others, thus
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comprehensively, the cache performance is degraded at a certain level. In contrast, LSbM-tree is
the best performer for both disk range query efficiency and for memory cache efficiency.

In this article, we have made a strong case for LSbM-tree to best utilize buffer cache and disks
for various workloads with both intensive reads and writes.
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