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Abstract—Increasingly more iterative and recursive query
tasks are processed in data management systems, such as graph-
structured data analytics, demanding fast response time. How-

ever, existing CTE-based recursive SQL and its implementation
ineffectively respond to this intensive query processing with
two major drawbacks. First, its iteration execution model is
based on implicit set-oriented terminating conditions that cannot
express aggregation-based tasks, such as PageRank. Second,
its synchronous execution model cannot perform asynchronous
computing to further accelerate execution in parallel. To address
these two issues, we have designed and implemented SQLoop, a
framework that extends the semantics of current SQL standard in
order to accommodate iterative SQL queries. SQLoop interfaces
between users and different database engines with two powerful
components. First, it provides an uniform SQL expression for
users to access any database engine so that they do not need to
write database dependent SQL or move datasets from a target
engine to process in their own sites. Second, SQLoop automati-
cally parallelizes iterative queries that contain certain aggregate
functions in both synchronous and asynchronous ways. More
specifically, SQLoop is able to take advantage of intermediate
results generated between different iterations and to prioritize
the execution of partitions that accelerate the query processing.
We have tested and evaluated SQLoop by using three popular
database engines with real-world datasets and queries, and shown
its effectiveness and high performance.

I. INTRODUCTION

Recursive and iterative query processing has become in-

creasingly important in data analytics, as the rapid growth of

social media, semantic web and knowledge database devel-

opment, has imposed a large demand for iterative algorithms,

and queries searching paths in a network or hierarchy relation-

ships. Recent work has proposed specialized graph processing

systems that express queries in a vertex-based API [1] that

offer high performance. Moreover, extensions to the original

Datalog [2] has been made in order to accommodate and

execute a wider variety of recursive queries more efficiently.

However, our work focuses on Relational Database Manage-

ment Systems (RDBMSs) that have been used for decades

and lack the ability to perform recursive or iterative queries

effectively. First, our work is motivated by the fact that SQL is

an already widely known and used query language, therefore,

any incremental change will require a significantly smaller

learning curve for the users than any other API. Second, a lot

of data are already stored in RDBMSs and thus, there will be

no need to move them or change their structure, which can

be an expensive task both in terms of execution time and user

productivity. Third, RDBMSs are well studied to handle large

amounts of data, so, reusing them would enable us to exploit

several existing optimizations. In this paper, we explore and

address the existing limitations on the current SQL standard

and propose optimizations that can accelerate iterative query

processing on any RDBMS.

Common Table Expressions (CTEs) have been part of the

SQL standard since 1999 [3], [4] and are used in SQL pro-

gramming to reduce the complexity of complicated queries. In

general, CTEs are temporarily named result sets that the user

can reference within a SQL statement. A CTE also supports

recursive evaluation that enables users to express hierarchy

queries or path traversing algorithms. However, despite the

fact that CTEs exist in the SQL language for almost 20

years and are supported by popular database engines like

Microsoft SQL Server [5], PostgreSQL [6], SQLite [7] and

Oracle MySQL [8], not all database systems implement the

recursive evaluation.

SQL programming interface is a critical link between users

and data processing systems to easily express and efficiently

parallelize query tasks. However, current CTE-based SQL

and its implementation has two major drawbacks to support

a wide scope of iterative computations. First, its iteration

execution model, based on implicit set-oriented terminating

conditions, cannot express aggregation-based tasks, such as

PageRank [9], and second, its synchronous execution model

cannot perform asynchronous computing to further accelerate

execution in parallel. To address these issues, we have de-

signed and implemented SQLoop, a framework that extends

the semantics of current SQL standard in order to accommo-

date iterative SQL queries. SQLoop interfaces between users

and different database engines with two powerful components.

First, it provides a uniform SQL expression for users to

access any database engines so that they do not need to

write database dependent SQL or move datasets from a target

engine to process them in their own sites. Second, SQLoop

automatically parallelizes iterative queries that contain certain

aggregate functions in both synchronous and asynchronous

ways. More specifically, SQLoop is able to take advantage of

intermediate results generated between different iterations and

also to prioritize the execution of partitions to asynchronously

accelerate the query processing.

In pursuance of a generalized solution we avoid to alter the

implementation of a current SQL database engine which will
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introduce dependency with a specific system and potentially

further limitations such as the expensive and mundane data

loading step. Instead, our system is implemented as a mid-

dleware that exists between the user and the database engine,

providing in this way a general purpose implementation that

can be used with most SQL engines that support transaction

management and JDBC connections [10]. Figure 1 presents

an overview of SQLoop.

To accelerate iterative CTE queries, our system spawns

multiple threads that open different connections with the

underlying database system. For each new connection that the

database system receives, it spawns a new process in order to

accommodate the additional computational needs. In this way,

although our system does not have explicit control over the

processes used by the underlining database engine, it is still

able to utilize multiple CPUs while executing a single iterative

query.

In order to parallelize the iterative CTE query submitted

by the user, our system partitions the main CTE table into

smaller ones. Then, for each partition of the main table, it

generates multiple computational tasks that contain regular

SQL statements. Each statement is submitted by SQLoop to

the database using the JDBC connection obtained by the thread

that executes this specific task.

We propose three different parallel execution methods that

can be used if a query uses one of the standard SQL aggregate

functions: SUM , MIN , MAX , COUNT or AV G. The first

one is the Synchronous Execution method which is based on

a two-phase computation. During the first phase, the system

performs all the computations that are related to a given

partition and creates a message table with data that will be

needed by other partitions. In the second phase, the system

creates tasks that are associated with a given partition and

their only purpose is to read data needed by other partitions.

The second one is the Asynchronous Execution method and it

is based on the delta-based accumulative iterative computation

(DAIC) proposed in [11] that allows the computation to use

intermediate results of the current iteration. Finally, the third

parallel execution method is the Prioritized Asynchronous Ex-

ecution and it implements a priority scheduling by performing

first the computations on the dataset partitions that have the

potential of accelerating the execution of the iterative query.

We remark that query parallelization is transparent to the

user. Except from the actual iterative CTE, the user does not

need to specify any other properties to the system. SQLoop

automatically parses and analyzes the query properties in order

to execute it in parallel.

Finally, SQLoop implementation is lightweight, as it does

not perform any actual computation on the data. Instead,

it manages the data partitions, the queries to be submitted

in the target database and the thread scheduling. Since our

implementation uses JDBC connections, it can also work with

remote database systems. In general, it is possible to create

connections with multiple RDBMSs on different machines by

specifying the URL of each target database engine and use

SQLoop to redirect the queries on demand.

Fig. 1: Execution flow of SQLoop: Iterative/Recursive queries sub-
mitted by users are regulated by our CTE expression extension, and
automatically parallelized with optimizations in both synchronous
and asynchronous ways before being executed in different database
engines, such as PostgreSQL, MySQL, MariaDB, and others.

We have evaluated SQLoop and its optimizations using three

popular RDBMSs, namely, PostgreSQL [6], MariaDB [12] and

Oracle MySQL [8]. Using real-world datasets and queries in

our extensive experiments, we show the effectiveness and high

performance of our system.

The contributions of this paper are summarized as follows:

• An extension is added to the current SQL standard to

enable users to express iterative queries on relational data,

which serves as a common interface between users and

any database engine.

• The development of a set of optimizations has been made,

which significantly accelerates execution by transpar-

ently parallelizing and asynchronously executing iterative

queries that contain certain aggregate functions.

• The iterative query expressions, query optimizations

and automatic parallelization are integrated into the

SQLoop framework, which effectively bridges users to

any database engines in a system independent way.

• A strong case is made for asynchronous iterative query

processing not only for its high performance but also for

our automatic approach in SQLoop, which would open

a door to widely apply asynchronous parallel models in

data processing.

The rest of the paper is organized as follows: Section II

provides background information on recursive Common Table

Expressions (CTEs). Section III introduces the iterative CTEs.

Section IV presents SQLoop implementation. Section V dis-

cusses the proposed parallel execution algorithms. Section VI

presents the experimental studies. Finally, Section VII dis-

cusses related work and Section VIII concludes.

II. BACKGROUND

A. Recursive CTEs

In SQL 1999 standard, CTEs provide the ability to create a

temporary view that is visible only within a single query. The

purpose of CTEs is mainly to reduce repeated computations

of complex queries that are referred to more than once. A

CTE can be defined explicitly with the use of a WITH clause
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or implicitly by the query optimizer. Furthermore, the user

can define a recursive CTE by using the word RECURSIVE

right after WITH. Although this is just a convention that is

not followed by all database systems that implement recursive

CTEs, we will use it in order to distinguish recursive CTEs

from non-recursive ones. The general syntax of a recursive

CTE is:

WITH RECURSIVE R AS (R0 UNION ALL Ri) Qf

In general, a recursive CTE named R is composed by a

non-recursive query R0 (also mentioned as anchor table or

seed) and by a recursive one Ri. The recursive part Ri should

refer to R only once in order to ensure linear recursion. The

evaluation of the recursive CTE stops when no more rows are

returned by the evaluation of Ri. While R0 and Ri denote the

non-recursive and recursive parts of the query in general, for

simplicity, we will also use it as a reference to the result rows

produced by Ri during the ith execution, with R0 referring

to the result rows produced by the non-iterative part of the

query. Table R contains the union of all intermediate results

thus, R = R0 ∪R1 ∪ · · · ∪Rn where n is the total number of

recursions that were performed by the database engine. Finally,

query Qf will be executed on table R to calculate the final

result. Example 1 illustrates how a recursive CTE is able to

calculate the sum of the numbers in the Fibonacci sequence

that are less than a thousand.

A widely known evaluation technique that is used by many

databases (like PostgreSQL) is the semi-naive evaluation [13].

The baseline naive algorithm evaluates recursive queries mul-

tiple times until no more rows are returned. However, this

approach is inefficient as it will reproduce already calculated

rows in each recursion. The semi-naive approach is an op-

timization over the baseline naive algorithm that eliminates

duplicates by providing as an input to the next recursion only

the output rows of the last recursion (i.e. the delta between

the last recursion and the current one).

A recursive CTE is almost identical with a recursive view

with only one difference, the scope. While the CTE can be

viewed only within a query, a view can be defined and used

in more than one queries. In this paper, we explore recursive

CTEs instead of views. However, the insights that apply to one

SQL structure can be easily applied to the other, if we omit

the scope difference. Previous work has focused on optimizing

the evaluation of recursive views [14] and recursive processing

in general is well studied in the context of Datalog [15]–[23].

B. Problem Statement

Although recursive CTEs extend the expressiveness of SQL

as they can accommodate hierarchy queries and some graph

traversal algorithms, their usage is still limited. One of the

main limitations of recursive CTEs are aggregate functions,

as they cannot be used on the recursive part of the query.

This limitation makes CTEs unable to express efficiently

a large category of iterative algorithms such as PageRank,

SimRank [24], HITS [25], Connected Components [26], etc.

Example 1 Recursive CTE that calculates the sum of the

numbers in the Fibonacci sequence that are less than 1000.

WITH RECURSIVE Fibonacci(n,pn) AS (

VALUES (0,1)

UNION ALL

SELECT n + pn, n

FROM Fibonacci

WHERE n < 1000

)

SELECT SUM(n) FROM Fibonacci;

Moreover, results between different recursions Ri can only

be concatenated with the use of UNION ALL operator ( R =
R0 ∪R1 ∪ · · · ∪Rn). In other words, the final table R cannot

be updated but only monotonically appended. This property

can be a problem for algorithms like PageRank and SimRank

that need to update the table and not to append it. The current

alternative solution is to submit a SQL script with multiple

queries. For each iteration the user will need to write queries

that (i) calculate and store in a temporary table the desired

results and (ii) update R with the results of the temporary

table. A single SQL query in most engines can update only

one table thus, to perform one iteration, the user will need to

submit at least two queries. If we also take into consideration

that the user will need to include SQL statements to manage

all the necessary tables, indexes, etc., then the script can easily

exceed 100 lines.

Parallelizing and accelerating recursive queries while fol-

lowing the semantics of the semi-naive evaluation that is used

by most database systems can also be challenging due to the

synchronous nature of the computation. Each recursion Ri

should have as an input all the rows generated by the previous

recursion Ri−1, a requirement that creates an implicit barrier

between Ri−1 and Ri. In a distributed computation this would

imply two facts: (i) all the computations related to Ri−1 should

be completed before starting executing tasks for Ri, even if

some of the computations are not relevant to Ri, (ii) even if

there are available resources to start the computation of Ri,

the system should wait for all the pending computations of

Ri−1 to finish.

Finally, perhaps the most fundamental problem of recursive

CTEs is that they assume that a query needs to reach a fix-

point, a particular set of rows that satisfies the recursive rela-

tion. However, this is not the case for all iterative algorithms.

For example, the PageRank algorithm is terminated when a

particular threshold has been satisfied. This threshold is not

expressed through the set of rows returned by the evaluation

of the query but rather in the data values themselves. In other

words, recursive CTEs append rows after each iteration, while

in PageRank existing rows need to be updated iteratively. For

this reason, we argue that recursive CTEs are queries that are

focused on finding a result set rather than a result value.

III. ITERATIVE SQL

A. Iterative CTEs

To address the problems explained in the previous section,

we propose a new SQL structure, the iterative CTEs. In order
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Type T c Syntax T c Satisfaction

Metadata
n ITERATIONS After n iterations.

n UPDATES When Ri updates less than n rows on table R.

Data
expr When expr returns |R| rows.
ANY expr When expr returns at least 1 row.
expr <,=,> e When expr returns a value smaller, equal or greater than e respectively.

Delta
DELTA expr

The user can refer to the previous iteration by using Rdelta inside expr.ANY DELTA expr
DELTA expr <,=,> e

TABLE I: Different types of termination conditions

to introduce an iterative CTE, we follow the same logical

structure as the one that already exists in a recursive CTE.

We replace the keyword RECURSIVE with ITERATIVE in

order to distinguish between the two different types of queries.

An iterative CTE starts by executing the initial query R0 and

by storing the result into table R. Then, the query executes

the iterative part Ri and updates the values of R. We replace

the UNION ALL keyword with ITERATE as the query now

updates R instead of monotonically appending rows to it.

The execution of Ri will be repeated by the query until the

termination condition T c is satisfied. Table R will contain the

most updated version that has been resulted by the execution

of the query Ri for the nth time, where n is the number

of iterations performed by the query in order to satisfy T c.

Finally, query Qf will be executed to yield the final result.

We define the general syntax of an iterative CTE as:

WITH ITERATIVE R AS (R0 ITERATE Ri UNTIL T c) Qf

One assumption that our model makes, is that the first

column of the table R is a primary key. We call this column

Rid. We assume that once R0 yields the first set of values for

Rid, then this set cannot be changed by Ri. The user should

define Ri in such a way that its execution will either return

the same set or a subset of Rid. Using Rid is a necessary

assumption that we need to make in order to update and

partition table R correctly. The Partition of the table R is

necessary in order to parallelize the query and it is discussed

in Section V. The single-threaded execution algorithm for

SQLoop uses a temporary table Rtmp to store the results of Ri

in each iteration. We denote the primary key column of Rtmp

as Rtmp id. At the end of each iteration, SQLoop updates R
with the rows of Rtmp by matching the keys in the columns,

Rid and Rtmp id. Thus, only the rows that have primary keys

that satisfy Rid∩Rtmp id will be updated in a given iteration.

Another way to understand Rid is to describe it as a unique

row identifier that is used during the partition and the update

of the CTE table. Iterative CTEs so far address the problem of

“append only” issue that exists in recursive CTEs. By letting

the user to update different rows of R in each iteration, we

enable him to express iterative algorithms that update values

and not sets.

B. Termination Conditions

Another key difference between a recursive CTE and an

iterative one, is the termination condition. A recursive CTE ter-

minates once it reaches a fix-point, that is, once executing Ri,

it does not generate any new relations. During the execution

of a recursive CTE, the termination is implied and it depends

on the database engine that executes the query. However, this

approach can be inefficient for iterative processing as most of

the queries should terminate based on data values, metadata

or delta differences which are hard to be captured using the

fix-point semantics. As an example, we can consider some

possible terminations for the PageRank algorithm. One of the

most common termination condition is to simply repeat the

algorithm for 10 iterations, which means that the termina-

tion of the query relies on the metadata. Another possible

termination condition is to stop the calculation if the dataset

reached a convergence point, something that can be expressed

either by checking the data values of the dataset itself, if the

convergence point is known, or to set a threshold e for which

the delta rank (i.e. difference on the rank of a node between

iteration i and i− 1) should be smaller.

In order to address this problem, we propose three differ-

ent types of termination conditions that are based on data,

metadata and delta values. The termination condition T c on

an iterative CTE is defined explicitly by the user after the

keyword UNTIL. As the keyword implies, the query should

continue to execute Ri until T c is satisfied. As in programming

languages, the user is responsible to ensure that T c is well

defined and that it will be satisfied after n iterations. An

overview of the different types of termination conditions can

be found in Table I.

When T c satisfaction is related to metadata, SQLoop

checks either the number of iterations or the number of updates

performed by Ri during the last iteration. If the user specified

that Ri should be executed n times using the syntax UNTIL

n ITERATIONS, then SQLoop simply uses a for loop to

execute Ri for n times. If the user specified that R should

be terminated if Ri updated less than n rows during the last

iteration using the syntax UNTIL n UPDATES, then SQLoop

checks after each iteration the number of updated rows resulted

by the execution of Ri to decide if T c is satisfied.

When T c satisfaction depends on data values, SQLoop

checks if the relations that exist in R satisfy a regular SQL

expression expr given by the user. SQLoop gives the user the

ability to choose if expr should be satisfied by all the relations

in R or at least by one, something that can be specified by

using the keyword ANY. To determine how many relations in
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Example 2 PageRank

1 WITH ITERATIVE PageRank(Node, Rank, Delta)

2 AS(

3 SELECT src,0,0.15

4 FROM ( SELECT src FROM edges

5 UNION

6 SELECT dst FROM edges) AS alledges

7 GROUP BY src

8 ITERATE

9 SELECT PageRank.Node,

10 COALESCE(PageRank.Rank+PageRank.Delta,0.15)

11 COALESCE(0.85 * SUM(IncomingRank.Delta

12 * IncomingEdges.weight),0.0)

13 FROM PageRank

14 LEFT JOIN edges AS IncomingEdges

15 ON PageRank.Node = IncomingEdges.dst

16 LEFT JOIN PageRank AS IncomingRank

17 ON IncomingRank.Node = IncomingEdges.src

18 GROUP BY PageRank.Node

19 UNTIL 100 ITERATIONS)

20 SELECT Node, Rank FROM PageRank

R satisfy the expression given by the user, at the end of each

iteration, SQLoop executes expr. If the result set is equal to

the number of rows |R| (or at least one for ANY) that exist

in R, then T c is satisfied. Moreover, SQLoop can compare

the result of expr with an actual number e if the user inputs

expr <,=, > e. In this way, a T c can be based on the result

of an aggregation. For this case, SQLoop assumes that expr
will return only one row, with only one value.

Finally, in order to give the user the ability to use delta val-

ues in T c, we introduce the keyword DELTA. The purpose of

this type of termination condition is to calculate the difference

between values of the current iteration and the previous one.

Calculating delta values enables the user to express a T c that is

satisfied if the progress of the last iteration was not significant.

If SQLoop detects the keyword DELTA before expr then at

the end of each iteration, it simply copies the data from R to a

new Rdelta table and checks how many relations satisfy expr
in the next iteration using the same logic as before.

Allowing users to explicitly define a termination condition

for their iterative queries does not only increase the expres-

siveness of our model but it also removes the limitations im-

posed by the semi-naive evaluation technique used to execute

recursive CTEs. An important observation is that aggregate

functions are allowed in the iterative part of the query and

thus, iterative algorithms like PageRank can now be expressed

more efficiently.

C. Examples

To provide a deeper understanding and further motivation,

we provide two different examples of iterative CTEs. Exam-

ple 2 applies the PageRank algorithm to the entire dataset, a

purely iterative process. Example 3 finds the shortest path from

a given source, a query that traverses the dataset by exploring

connected nodes. For both examples we assume that the table

edges contains rows with three attributes, src, dst and

weight. Each row in table edges represents an edge going

from node src to node dst and has weight calculated as
1

outdegree
.

Example 3 Single Source Shortest Path

WITH ITERATIVE sssp (Node, Distance, Delta) 1

AS ( 2

SELECT src, Infinity, 3

CASE WHEN src = 1 THEN 0 4

ELSE Infinity END 5

FROM ( SELECT src FROM edges 6

UNION 7

SELECT dst FROM edges) AS alledges 8

GROUP BY src 9

ITERATE 10

SELECT sssp.Node, 11

LEAST(sssp.Distance,sssp.Delta), 12

COALESCE(MIN(Neighbor.Distance 13

+ IncomingEdges.weight), Infinity) 14

FROM sssp 15

LEFT JOIN edges AS IncomingEdges 16

ON sssp.Node = IncomingEdges.dst 17

LEFT JOIN sssp AS Neighbor 18

ON Neighbor.Node = IncomingEdges.src 19

WHERE Neighbor.Delta != Infinity 20

GROUP BY sssp.node 21

UNTIL 0 UPDATES) 22

SELECT sssp.Distance FROM sssp 23

WHERE sssp.Node = 100 24

In Example 2, we observe that the CTE defines a table

PageRank with three columns, Nodes, Rank and Delta.

Column Nodes contains all the node ids and also serves as

the primary key (Rid). Column Rank contains the rank of

each node and column Delta accumulates incoming rank.

The non-iterative part of the CTE (Lines 3-7) queries the

edges tables in order to obtain all the unique node ids.

Also, it initializes all ranks to 0 and all deltas to 0.15.

The iterative part of the query (Lines 9-18), selects all the

node ids in order to return the same set of primary keys.

Then, in each iteration Rank accumulates Delta and Delta

accumulates all the incoming rank from the neighbor nodes

based on the formula 0.85 ∗ SUM(IncomingRank.Delta ∗
IncomingEdges.weight). The FROM clause (Lines 13-17) of

the iterative part, joins the PageRank with the edges table

(Lines 13-15) in order to obtain all the incoming edges for a

given node and then performs a self join of the resulting table

with the PageRank table (Lines 16-17) in order to obtain

the rank of the incoming edges. The query uses left joins in

order to mark the nodes that do not have incoming edges with

NULL and uses the COALESCE function to replace NULL
values with the default values (which is 0.15 for the rank and

0 for the delta). Finally, the termination condition (Line 19)

specifies that the PageRank algorithm should be repeated for

100 iterations and the final query (Line 20) returns all the

nodes with their calculated ranks at the end. A more detailed

explanation of the PageRank algorithm expressed by this query

can be found in [11].

Example 3 defines a CTE sssp with three columns,

Nodes, Distance and Delta that follow the same logic as

the previous example. The main difference is that instead of

rank, the query now calculates distance from a given source.

The non-iterative part of the CTE (Lines 3-9) extracts all the

node ids from the edges table and assigns infinite distance

1043



to all of them except from the source, which in our example

is node with ID 1. The iterative part (Lines 11-21) visits

all the connected nodes, doing one step per iteration and

calculating the new distance. In each iteration, the query stores

the newly calculated distance to delta (Lines 13-14) and in the

next iteration checks if the new distance is smaller than the

current one (Line 12). The FROM clause (Lines 15-19) of the

iterative part follows the same logic as Example 2. This query

terminates when there are no more rows to update (Line 22).

Lastly, the final query (Lines 23-24) returns the distance from

the source to the destination, which in our example is the node

with ID 100.

IV. SYSTEM DESIGN AND IMPLEMENTATION

SQLoop consists of three components: (1) an API to accept

recursive and iterative CTEs, (2) a translator to turn incoming

CTEs into regular SQL queries executable in various database

engines, and (3) a parallel execution engine. An overview of

the system can be found in Figure 2.

A. System Architecture

To enable database systems to execute recursive and iterative

CTEs, we developed SQLoop. SQLoop accepts CTEs from

the user and translates them to regular SQL queries that

can be executed by most database engines. Implementing

our system as a middleware, allows us to develop flexible

and effective solutions that are not engine dependent and

thus, letting users process data in their own RDBMS without

the need to transfer them. Moreover, this solution ensures

a consistent API and SQL syntax across multiple systems.

The user is able to connect with a target database engine by

specifying only the URL and the port number. Then, CTEs

can be executed without providing any further details. Our

intension is to enable users to integrate SQLoop into their

work-flow seamlessly and easily.

SQLoop uses JDBC connections to submit SQL statements

to the target database systems. Several features offered by

the JDBC drivers are vital to ensure correct and efficient

execution for our system. First, JDBC offers the ability to

batch multiple SQL statements together. Our system uses this

feature, when possible, to avoid communication overhead.

Second, JDBC drivers ensure efficient data and meta-data

transferring between our system and the database engine. Even

though SQLoop does not process or handle large amounts of

data, it still needs to access them efficiently. Finally, SQLoop

parallelizes iterative CTEs as described in Section V and thus,

it needs to submit and execute multiple queries concurrently.

The JDBC drivers not only give the ability to define the

beginning and the end of a transaction but also to determine

the transaction isolation level. These JDBC features are critical

in order to execute concurrent queries efficiency.

B. Query translation

When the user submits a new query, SQLoop uses a custom

parser created by antlr4 [27] based on the original SQL

grammar in order to extract information. If the query is not a

Fig. 2: SQLoop internal components and architecture. SQLoop ac-
cepts CTEs, analyzes them and uses different executors to process
them. The communication with the RDBMS goes through the trans-
lation module and JDBC connections.

recursive or an iterative CTE, then it is marked as a regular

SQL statement and it is executed as such. Otherwise, SQLoop

searches for the keywords RECURSIVE or ITERATIVE in

order to distinguish between the two different types of CTEs.

The parser then yields further information regarding the CTE

such as the name of the main table, the columns and the

different parts of the query (i.e. R0, Ri and Qf ).

During the first step of the execution, SQLoop creates the

main CTE table R with the corresponding columns in the

target database engine using the SQL command CREATE

TABLE. Then SQLoop executes R0 and stores the result

into R using the SQL command INSERT INTO R R0. As

explained in Section III, our system uses a table Rtmp in order

to store temporarily the results of Ri. If SQLoop executes

a recursive CTE, then it appends the data from Rtmp to R
using again an INSERT INTO SQL statement. Otherwise, if

the CTE is iterative, SQLoop updates R with the values of

Rtmp by matching the keys in the Rid and Rtmp id columns.

In order to decide when to stop executing Ri for a recursive

CTE, SQLoop checks if the query reached a fix-point, that

is, if the last execution of Ri yielded any new rows. If the

CTE is iterative, it applies the logic described in Section III

in order to decide the termination of the query. Finally, query

Qf is executed for both iterative and recursive CTEs in order

to yield the final results.

A common problem that arises with the use of different

database systems is the SQL syntax. In order to resolve

this problem, SQLoop has a query translation module that is

dedicated to resolve syntax problems that are related to specific

database systems. This module contains pre-defined rules that

dictate how a given type of query should be rewritten for a

given target database engine. In order to ensure transparency

for the user, SQLoop uses this module every time before it

submits a new query to ensure consistency. SQLoop is able

to auto-configure the translation module based on the JDBC

drivers that are used.

C. OLAP Architecture

We have built and designed SQLoop under the assumption

that it will be used mainly as part of OLAP work-flows
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such as data mining and analytics. Thus, SQLoop operates

under the assumption that during the execution of an iterative

query, the involved database tables will not be subject to any

updates. Basically, the only assumption that SQLoop does is

that tables involved in a recursive or an iterative CTE will

not be altered during the execution of the query. The rest of

the tables and queries, submitted to the target database, can

still be executed in parallel (with ACID [28], [29] properties).

Supporting transactions, for the queries that SQLoop currently

runs and the tables involved, requires a complicated solution

that is perhaps material for a future work. We acknowledge

the importance of supporting transactional processing but we

argue that in some cases the flexibility offered by our design

can outweigh this limitation.

V. PARALLEL EXECUTION

During the processing of an iterative query, most of the

time goes into the execution of the iterative part. This section

discusses how SQLoop automatically parallelizes and opti-

mizes the iterative part of the CTE when certain properties

are satisfied.

A. Query Analysis

SQLoop analyzes Ri in order to determine if its execution

can be parallelized. The focus of this work is to parallelize

queries that use regular SQL aggregate functions: SUM ,

MIN , MAX , COUNT or AV G. A comprehensive list of

algorithms that can be supported using aggregate functions

can be found in [30]. Moreover, distributed aggregation and

the limitations imposed by the properties of the aggregate

functions have been studied in [31]. During the query analysis,

SQLoop tries to verify that Ri contains one of the aggregate

functions mentioned above in its SELECT clause. If the query

does not contain a supported aggregate function, then SQLoop

executes the query using the single-threaded method described

in Section IV.

The next step for the query analyzer is to decide if there

are any data that need to be exchanged during the parallel

execution and under the assumption that the original table

R will be partitioned. To determine that, SQLoop further

analyzes the FROM clause of Ri in order to detect self-joins.

If R is partitioned into multiple tables Rpt1, Rpt2, ... Rptn,

then in order to execute a self-join, every partition Rptx where

x ∈ [1, n] will need to process rows from every other partition

Rpty where y ∈ [1, n]. If no data need to be exchanged

between the different partitions, then the parallelization of the

iterative part is a straightforward process as it can be done

by simply partitioning, and processing the dataset in parallel

without any communication during each iteration. Thus, we

focus mainly on self-joins as they need to exchange data and

are used in iterative queries to express incoming information.

Finally, the query analyzer also determines the columns of

R that need to exchange information between the different

partitions. To achieve that, it searches again the SELECT

clause in order to identify references of tables that are the

result of the self-join. We denote these columns as Ridelta .

To provide better understanding, let us revisit the PageRank

query in Example 2. The query analyzer searches the SELECT

clause (Lines 9-12) in order to determine if Ri contains

SUM , MIN , MAX , COUNT or AV G. In our example, Ri

contains SUM and thus, the query qualifies as parallelizable.

Then, the analyzer searches the FROM clause (Lines 13-17)

for a self-join and finds one in Line 16. Finally, the analyzer

scans again the SELECT clause to determine which column

calculation will need to process data from other partitions,

which in our example is column Delta.

B. Query Parallelization

After the query analysis, SQLoop knows if the CTE can

be parallelized and which column calculations will need to

exchange data between different partitions. Before paralleliz-

ing the iterative part, SQLoop executes R0 and stores the

result to R. While developing SQLoop, we observed that join

operations were the most expensive part of the computation.

We also observed that part of the result remains constant. As

an example, we can consider the first join in the PageRank

algorithm in Example 2 (Lines 13-15) that finds all the

incoming edges. During the execution of the query, table

edges does not change and as such, incoming edges do

not change either. To provide better performance, SQLoop

materializes the part of the join result that remains constant.

To achieve that, our system performs the join contained in

the FROM clause and projects only the attributes that are used

in a column computation of Ri but are not being updated.

During a self-join, it also keeps the columns that contain the

Rid of each intermediate table in order to maintain the row

matching between them. In the PageRank example, these at-

tributes are PageRank.Node, IncomingEdges.weight

and IncomingRank.node. The columns src and dst of

table IncomingEdges are omitted as they are not used by

Ri. The result is stored in table Rmjoin. Finally, SQLoop

rewrites the FROM clause of Ri and replaces the expensive

joins with Rmjoin. This optimization greatly improves the

performance, as a lot of redundant computations are omitted.

Materializing the constant part of an iterative computation is

not the focus of this work and therefore further description of

the optimization shall not be provided. Related work [32] has

explored this topic extensively.

SQLoop creates a thread pool in which, each thread opens

a new connection with the target database engine. Despite

the fact that SQLoop does not have explicit control over

the resources used by the database systems, in general each

new connection is accommodated by a separate process.

Hence, creating multiple threads with different connections

in SQLoop, results into parallel query execution. To avoid

overhead created by concurrent queries that read and write

on the same table due to locking, SQLoop partitions R into

multiple tables Rpt1, Rpt2 ... Rptn by applying a hash function

on Rid. Moreover, to avoid copying data at the end of Ri back

to R, we re-define R as a view of Rpt1 ∪Rpt2 ∪ · · · ∪Rptn.

SQLoop automatically determines the number of threads

depending on the available CPUs of the system, assuming
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that both SQLoop and the target database engine are on the

same machine. In order to avoid occupying resources from

the database engine, SQLoop uses half of the available CPUs.

Moreover, SQLoop by default uses 256 partitions to take

advantage of the asynchronous techniques that are discussed in

the next section. However, both number of threads and number

of partitions can be re-defined by the user through the SQLoop

API.

C. Two-phase Compute/Gather computation

For each partition Rptx where x ∈ [1, n], SQLoop creates

two different types of tasks, named Compute and Gather.

A Compute task is responsible to perform computations that

are related only to Rptx and a Gather task is responsible

only for gathering results needed from other partitions. To

ensure consistency, SQLoop performs only one task at a time

for a given Rptx. In order to enable SQLoop to process Ri

asynchronously, we have designed the Compute and Gather
tasks based on the 2-phase update function of the delta-

based accumulative iterative computation (DAIC) proposed

in [11]. The Compute task performs the first phase of the

update function while the Gather task the second. Figure 3

provides an overview of how Compute and Gather tasks are

performed by SQLoop.

A Compute task contains two steps. The first step ensures

that other partitions will be able to access the needed data

efficiently. Thus, it performs the computations of Ridelta and

then stores the results to a separate table, named message

table. Except from the results of Ridelta , a message table also

contains Rid in order to ensure that Gather tasks will be able

to gather the data correctly. Each time a new Compute task is

performed, it creates a new message table. Creating multiple

message tables resolves the problem of having a Compute
task writing to Rptx while other Gather tasks are trying to

read from it. Modern database systems are able to handle

read and write conflicts but they will still introduce overhead

due to the exclusive locking from the writing queries. After

completing the creation of the message table, the task updates

a global data-structure that is visible across all SQLoop

threads. During the second step, a Compute task performs

the calculations in columns that are in Ri \Ridelta (i.e. in Ri

but not in Ridelta ). These computations do not need to access

data from other partitions.

A Gather task contains only one step, and this is to update

Ridelta by reading all the unread message tables that have

been created since the last time that a similar task for Rptx

was performed. Keeping all the available message tables into

a global data structure makes this task easy. However, an

important consideration during a Gather task is performance,

as it needs to read multiple message tables. To avoid the

overhead of submitting multiple SQL queries that scan Rptx

every time in order to match the Rid columns, SQLoop creates

a single query that contains the union of all the message tables

that need to be processed. Moreover, indexes on all tables

(Rptx and message tables) ensure that unnecessary scans will

be avoided when possible.

���

Fig. 3: Two-phase Compute/Gather computation and schedul-
ing policy of Sync and Async execution. CRptx and GRptx are
Compute and Gather tasks for partition Rptx. MsgRptx is the
latest message table created by a Compute task for partition Rptx.

D. Accumulating data change

To enable asynchronous processing and avoid the need for

synchronization, Compute and Gather tasks are designed to

accumulate the changes that are made from other partitions on

the Ridelta columns. This is a key point for the asynchronous

parallelization and also the limitation that prevents SQLoop

from parallelizing a wider variety of aggregate functions. Data

accumulation in Ridelta is based on, (i) the data stored by the

Compute task to a message table and (ii) the function used

during the Gather task to accumulate the change from other

partitions to Ridelta .

Accumulating the changes on data for SUM , MIN and

MAX is relatively simple, as they satisfy both the distributive

and accumulative properties. This means that the Compute
task can store in the message table the SUM , MIN or MAX
value for a specific row and then a Gather task will be able to

calculate a SUM , MIN or MAX for another row of another

partition, using the data stored in the message table at a later

time. For example, in the PageRank query, the Compute task

stores in the message table the current SUM of incoming rank

of a given node and then, a Gather task accumulates all the

incoming rank from nodes that have incoming edges coming

from other partitions, by performing a SUM over all of their

values that exist in the respective message tables.

However, implementing the COUNT and AV G aggregate

functions in the same way will not yield the correct results. For

the COUNT function, the problem arises when the Gather
task tries to accumulate the results from other partitions. If

the Gather task applies the COUNT function on the data

of the message tables again, then it will basically calculate

the number of incoming messages for each row and would

not accumulate their count. To do that, it would need to

perform a SUM over these values instead. Moreover, for the

AV G aggregate function, in order to enable a Gather task to

accumulate results from other partitions, it would need both

their SUM and COUNT values. SQLoop is aware of these

limitations and for this reason, it alters the function used on

the Gather task and the data stored in the message tables

based on the aggregate function that is used in the query.
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E. Asynchronous Parallel Execution

SQLoop has a master thread that is responsible for assigning

Compute and Gather tasks to available threads from the pool.

There are three different parallel execution methods that assign

tasks to threads using different policies.

The simplest one is the Synchronous Execution (Sync) and

ensures a purely iterative processing by performing a two-

phase computation. During the first phase, SQLoop assigns

all the Compute tasks to available threads. If the number of

threads is less than the number of tasks, then the master thread

waits until more threads become available. During the second

phase, SQLoop assigns all the Gather tasks to available

threads using the same logic. An iteration is complete when

all tasks have been completed. This kind of execution has an

explicit barrier between the two phases and each iteration is

distinct.

While the Sync Execution is simple and effective, the gen-

erated results are used by another Gather task only after all

other Compute tasks are completed. To accelerate the query

computation using newly generated results, the Asynchronous

Execution (Async) implemented in SQLoop, schedules first

a Gather task and then a Compute task. In this way, data

that become available by the execution of a Compute task

are processed immediately by another Gather task. Figure 3

contains the scheduling policy of n partitions for both Sync
and Async executions. In the Sync execution, the computation

of the query advances only during the second phase when

Gather tasks are performed. In this case, all Gather tasks

process data only from the previous iteration. However, in the

Async execution, the computation advances every two tasks,

propagating in this way the changes faster. For our example,

GRpt2 will not only process the available data from the

previous iteration, but also the intermediate data (i.e. data from

this iteration) of Rpt1 as CRpt1 has been already performed

(and thus, a new message table exists). Following the same

logic, we can observe that GRptn will process data from the

previous iteration and intermediate results from Rpti where

i ∈ [1, n), accelerating in this way the query computations.

An important observation is that the more partitions that exist,

the faster intermediate results will be propagated as n becomes

bigger for the same number of rows. Although asynchronous

execution in the past has been used to cope with waiting

problems related to distributed systems such as heterogeneous

clusters, in our case, it accelerates the query by allowing

intermediate results to be processed faster.

Finally, SQLoop also supports Prioritized Asynchronous

Execution (AsyncP ) in order to avoid scheduling tasks that

do not contribute to the progress of the query. As an example,

we can consider the SSSP algorithm that operates only on the

traversed path. Thus, tasks related to partitions that do not

contain nodes related to the path will not contribute to finding

the correct result and will waste time. In AsyncP instead

of scheduling Gather and Compute tasks in a round-robin

fashion, the master thread maintains a priority queue. SQLoop

updates the priority at the end of each task by scanning

the correlated partition. The priority dependents on a query

provided by the user. In the case of the PageRank algorithm,

the priority of Rptx depends on the sum of rank of its nodes

while in SSSP, it depends on the node that has the least

distance from the source. Finding a priority function can be

difficult and thus, SQLoop uses the user’s input to define it.

VI. EXPERIMENTAL STUDIES

In this section we provide an extensive experimental evalua-

tion of SQLoop. First, we evaluate how intermediate results ac-

celerate the computation process (§ VI-B) and then, we explore

how the synchronous and asynchronous implementations can

utilize multiple cores (§ VI-C). Finally, we compare SQLoop

with the alternative solution, using SQL scripts (§ VI-D).

A. Configuration

We report the results using a single machine with 32 cores

running at 2.6 GHz (Intel Xeon CPU E5-2650 v2) and 32GB

of RAM. The operating system running on the machine is

Linux Ubuntu 16.04. We tested SQLoop with PostgreSQL

v9.6 and MySQL. To evaluate SQLoop’s performance with

MySQL, we used both the official MySQL v5.7 system and

its other popular version MariaDB v10.2. For PostgreSQL, we

set the shared memory buffers to 25% of the total available

memory (8GB) following the official recommendation in the

website and we used unlogged tables to avoid logging over-

head. We also configured the size of the temporary buffers

(index related buffers) to 4GB. For MySQL and MariaDB, we

used MyISA as the underlining storage engine and configured

the buffer sizes as previously.

To evaluate our system, we chose three different queries.

The PageRank (PR) query that performs computations in the

entire dataset (Example 2), the Single Source Shortest Path

(SSSP) algorithm that performs computations only to some

parts of the dataset (Example 3) and the Descendant Query

(DQ) which answers the question who is within n friend-

hops from a given node (also used in [33]). Both DQ and

SSSP queries are similar in the way that they explore the

dataset but different on how they calculate the distance/hops.

Moreover, the DQ query returns all the discovered nodes

whereas the SSSP query returns only the distance from a single

destination. For the PR experiment we used the Google web

dataset [34] (5,105,039 rows), for the SSSP experiment we

used the Twitter dataset [35] (1,768,149 rows) and for the

DQ experiment, we used the Berkeley-Stanford dataset [34]

(7,600,595 rows) which contains web-pages from berkely.edu

or stanford.edu. For this dataset, the DQ query calculates the

number of clicks that the user needs to make in order to go

from a given web-page to any other. All datasets are available

in [36]. We executed 100 iterations and we report the sum

of rank (i.e. convergence progress [11]) and the convergence

time for the PR experiment, and the execution time for the

SSSP experiment. As convergence time, for PR we define

the time that the dataset achieved 99% of the total sum of

rank and as execution time for SSSP when the shortest path

between source and destination has been computed. To report
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Fig. 4: SQLoop using a single thread

the results, we sampled the entire dataset using a separate

thread every 5 seconds. For the DQ query, we sampled the

entire dataset every second to report the number of web-pages

that have been discovered. For all experiments, we created 256

partitions.

B. Intermediate results

The first experiment tests how the asynchronous implemen-

tations of SQLoop can accelerate the computation of the query.

SQLoop uses a single thread. As we can see from the plots

in Figure 4, the asynchronous implementations outperform

the Synchronous Execution for all queries. More detailed, the

baseline Asynchronous Execution is 1.5×−3× faster than the

Synchronous for the PR and DQ queries and the Prioritized

Asynchronous Execution up to 3× faster for the SSSP query.

For the PR use case, the main performance benefit comes

mainly from the fact that the asynchronous implementations

are able to use intermediate results from the current iteration

in order to accelerate the convergence. Moreover, we remark

that for this particular example the two different asynchronous

implementations do not have any performance difference. This

happens because we use a real dataset and we partition it using

a hash function. Thus, the partitions that are created do not

have much difference in their priority. Additionally, the PR

query performs computations across the entire dataset, which

means that prioritizing one task over the other does not result

into a faster convergence.

In comparison, for the SSSP query, the two different

asynchronous implementations have a performance difference.

This is because during the execution of the query only some

partitions are used in the actual computation of the shortest

path. These partitions are the ones that contain nodes that

are newly discovered and are part of the traversal path of the

algorithm. Both asynchronous implementations are able to use

intermediate results and thus, execute the query faster than the

synchronous one, but prioritizing tasks from partitions that are

active in this case, accelerates the computation of the query

up to 3×.

For the DQ query, the asynchronous implementations are

again 1.5×−3× faster than the Synchronous Execution. When

exploring a small number of pages Prioritized Asynchronous

Execution gives a small performance benefit. This happens

because only a small number of partitions will participate on

the computation. However, as the query explores more web-

pages, the performance difference between the Asynchronous

Execution and the Prioritized Asynchronous Execution be-

comes smaller. More and more partitions will need to partic-

ipate in the query computation and as a result, prioritization

becomes irrelevant. Another observation is that as the number

of explored nodes becomes larger, the performance difference

between the synchronous and the asynchronous implementa-

tions becomes bigger. Web-pages that are further way, will

need more iterations in order to be discovered, something

that accumulates the improvement offered by the intermediate

results in each iteration.

In general, the more iterations SQLoop needs to perform in

order to calculate the final result, the bigger the performance

difference will be between synchronous and asynchronous

implementations. Moreover, the asynchronous implementa-

tions in most cases are 2× faster than the synchronous one
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Fig. 5: SQLoop using multiple threads and CPUs

and Prioritized Asynchronous Execution will result into a

significant performance improvement only if the iterative part

of the query (i.e. the WHERE in Ri) eliminates a significant

amount of rows in each iteration. Finally, the three different

execution techniques follow the same performance pattern for

all the different database systems.

C. Performance evaluation on multicores

In this section, we test how our system scales up by using

multiple threads and CPUs. We change the number of threads

used by SQLoop to 1,2,4,8,12 and 16. As we can observe from

Figure 5, increasing the number of threads in SQLoop also

increases the performance. This happens because each thread

is using a new JDBC connection and thus, more Compute
and Gather tasks are executed concurrently. Basically, by

opening multiple connections and using independent queries

and partitions, the target database engine uses more resources

to accommodate the same computational needs.

The scale of the performance improvement remains the

same as we add more threads to the execution of the query

for both synchronous and asynchronous implementations. The

machine that we used in order to conduct our experiments

has 32 cores but during the execution of the queries we

observed that all CPUs were in use while we used 16 threads.

This happens because the database systems used 16 different

processes to answer incoming queries, SQLoop used another

16 threads to submit the SQL queries, one more thread in

SQLoop was responsible for the task scheduling and finally,

there was also a last thread that was sampling the dataset

in order to observe the convergence. We also highlight the

fact that all systems and queries in our experiments were able

to significantly improve their performance with PostgreSQL

achieving a 10× better response time.

Another significant observation is that the execution time in

SQLoop changes according to the query rather than the data

input itself. Despite the fact that for the PR query we used a

dataset that is approximately 3× bigger than the one in the

SSSP query, the execution took almost 6× more time. As in

most frameworks that perform iterative data processing, the

execution time is more affected by the amount of data that

is processed in each iteration rather than the total size of the

dataset. In our case, while the SSSP query processes only a

few rows in each iteration, the PR query processes the entire

dataset. This is why the SSSP query takes only a few seconds

in PostgreSQL while the PR query takes a few minutes. Ewen

et al [37] also discuss the same problem in iterative processing

by naming the two different kind of queries as Bulk Iterations

and Incremental Iterations.

D. Other Comparisons

Finally, we compare SQLoop with the alternative solution of

writing SQL scripts. In Figure 6, we report the time SQLoop

needs to perform the PR query and the DQ query which in this

case, calculates how many clicks away two specific web pages

are. We picked two that are 100 clicks away. For both queries,

SQLoop uses 16 threads. We also report the time each system
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Fig. 6: Comparison of SQL scripts and SQLoop

needs to finish the execution of a SQL script that performs

the equivalent computation. SQLoop is able to accelerate the

computation up to almost 5× for the PR query and up to 3×
for the DQ query. The performance improvements comes for

several optimizations that were described in Section V such

as the materialization of redundant join operations, the careful

formulation of SQL queries and the use of indexes to avoid

full scans. However, the biggest performance improvement

comes from the fact that SQLoop is able to parallelize the

query and use multiple cores. Despite the fact that low-level

optimizations are not present, SQLoop is able to deliver high

performance across all systems although the improvement

varies depending on the underlying database.

Probably the most important point is that SQLoop not

only greatly reduces the execution time by using advanced

optimizations, but also the time needed by the user to prepare

the actual query by bypassing the mundane and counter-

productive process of writing complex scripts that are engine

dependent. For our examples, SQL scripts in most cases were

more than 200 lines, and we also needed to manually change

the syntax for some SQL statements. On the contrary, SQLoop

queries that are expressed through our proposed iterative CTE

extension were composed by only 20-25 lines.

VII. RELATED WORK

A. Iterative processing

Iterative processing has been studied in the context of

RDBMSs in the past. Zhao and Xu Yu [30] extend the

current CTE model to enable graph processing on relational

data. They propose the union− by − update operator which

enables recursive queries to execute iterative algorithms by

updating the table in each recursion. Passing et al. [38] also

propose an extension to SQL that enables iterative processing.

However, our work is different as it discusses a model that

considers different termination conditions, transparent paral-

lelization and enables asynchronous computation. Moreover,

Ghazal et al. [39] employ an adaptive technique to improve

the performance of Teradata, a system that answers recursive

queries by generating iterative query plans. Moreover, recent

work also tries to bridge the gap between RDBMSs and imper-

ative programming by converting UDFs [40] or vertex-centric

queries [41] to SQL. Finally, optimizing iterative queries has

also been studied in the past in the context of the MapReduce

framework [32], [33], [42] and array databases [43]. While

their optimizations are focused on different frameworks, they

all stress out the importance of supporting efficient, high-

performance iterative processing.

B. Asynchronous processing

Graph specialized systems have proposed and imple-

mented asynchronous computation for iterative processing.

GraphLab [44] aims to express asynchronous iterative algo-

rithms with sparse computational dependencies while ensuring

data consistency and achieving good parallel performance.

Grace [45] is a single-machine parallel graph processing

platform that allows customization of vertex scheduling and

message selection to support asynchronous computation. Gi-

raph++ [46] not only allows asynchronous computation while

keeping the vertex-centric model but is also able to handle

mutation of graphs. GiraphUC [47] relies on barrier-less

asynchronous parallel (BAP), which reduces both message

staleness and global synchronization. Maiter [11] proposes

delta-based asynchronous iterative computation model (DAIC)

and supports distributed asynchronous graph processing. Gun-

Rock [48] supports fast asynchronous graph computation in

GPUs. Naiad [49] also supports iterative and incremental com-

putations. Unfortunately, most of the above systems express

queries using a vertex-based API [1] and do not support auto-

matic asynchronization. Ramachandra et al. [50] automatically

rewrite database applications in order to take advantage of

asynchronous execution but their system transforms Java code

and not SQL queries.

VIII. CONCLUSION

There is a gap between the declarative SQL nature for

set/bag-based computations and imperative programming re-

quirements for explicit control flows in iterative computa-

tions. Existing CTE-based approach in SQL cannot funda-

mentally bridge the gap because of its limitation in express-

ing aggregation-essential algorithms, such as PageRank. Our

proposed solution in SQLoop provides a practically workable

solution to allow SQL to express iterative computations.

It exploits explicit, user-controllable terminating conditions

to enhance SQL for general-purpose iterative computations

without affecting SQL’s declarative programming nature. Fur-

thermore, SQLoop not only contributes to the language/ex-

pression level, but also utilizes an auto-mechanism developed

to automatically turn iterative queries into asynchronous par-

allel execution, eliminating a challenging burden to database

developers in their programming. In addition, our solution

SQLoop creates a common preprocessing platform to enable

database engine-independent execution for iterative and recur-

sive queries on different engines.

IX. ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their

insightful comments and suggestions. This work has been

partially supported by the National Science Foundation under

grants CCF-1513944, CCF-1629403, CCF-1718450 and by the

National Natural Science Foundation of China (61672141).

1050



REFERENCES

[1] R. R. McCune, T. Weninger, and G. Madey, “Thinking like a vertex:
a survey of vertex-centric frameworks for large-scale distributed graph
processing,” ACM Computing Surveys (CSUR), vol. 48, no. 2, p. 25,
2015.

[2] S. Ceri, G. Gottlob, and L. Tanca, “What you always wanted to
know about datalog (and never dared to ask),” IEEE Transactions on

Knowledge and Data Engineering, vol. 1, no. 1, pp. 146–166, 1989.
[3] S. Finkelstein, N. Mattos, I. Mumick, and H. Pirahesh, “Expressing

recursive queries in sql,” ANSI Document X3H2-96-075r1, 1996.
[4] C. J. Date, A guide to the SQL standard: a user’s guide to the standard

database language SQL. Addison-Wesley Professional, 1997.
[5] “Mircosoft SQL server,” http://www.microsoft.com/en-us/sql-server,

2017.
[6] PostgreSQL Global Development Group, “PostgreSQL,”

http://www.postgresql.org, 2017.
[7] “SQLite,” http://www.sqlite.org/, 2017.
[8] “MySql,” https://www.mysql.com, 2017.
[9] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation

ranking: Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.
[10] G. Reese, Database Programming with JDBC and JAVA. ” O’Reilly

Media, Inc.”, 2000.
[11] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “Maiter: An asynchronous

graph processing framework for delta-based accumulative iterative com-
putation,” IEEE Trans. on Parallel and Distributed Systems, vol. 25,
no. 8, pp. 2091–2100, Aug. 2014.

[12] “MariaDB,” https://mariadb.com, 2017.
[13] F. Bancilhon, “Naive evaluation of recursively defined relations,” in On

Knowledge Base Management Systems. Springer, 1986, pp. 165–178.
[14] C. Ordonez, “Optimization of linear recursive queries in sql,” IEEE

Transactions on Knowledge and Data Engineering, vol. 22, no. 2, pp.
264–277, 2010.

[15] J. Seo, S. Guo, and M. S. Lam, “Socialite: Datalog extensions for
efficient social network analysis,” in Data Engineering (ICDE), 2013

IEEE 29th International Conference on. IEEE, 2013, pp. 278–289.
[16] J. Seo, J. Park, J. Shin, and M. S. Lam, “Distributed socialite: a datalog-

based language for large-scale graph analysis,” Proceedings of the VLDB

Endowment, vol. 6, no. 14, pp. 1906–1917, 2013.
[17] W. E. Moustafa, V. Papavasileiou, K. Yocum, and A. Deutsch, “Data-

lography: Scaling datalog graph analytics on graph processing systems.”
[18] J. Wang, M. Balazinska, and D. Halperin, “Asynchronous and fault-

tolerant recursive datalog evaluation in shared-nothing engines,” Pro-

ceedings of the VLDB Endowment, vol. 8, no. 12, pp. 1542–1553, 2015.
[19] A. Shkapsky, K. Zeng, and C. Zaniolo, “Graph queries in a next-

generation datalog system,” Proceedings of the VLDB Endowment,
vol. 6, no. 12, pp. 1258–1261, 2013.

[20] A. Shkapsky, M. Yang, and C. Zaniolo, “Optimizing recursive queries
with monotonic aggregates in deals,” in Data Engineering (ICDE), 2015

IEEE 31st International Conference on. IEEE, 2015, pp. 867–878.
[21] A. Shkapsky, M. Yang, M. Interlandi, H. Chiu, T. Condie, and C. Zan-

iolo, “Big data analytics with datalog queries on spark,” in Proceedings

of the 2016 International Conference on Management of Data. ACM,
2016, pp. 1135–1149.

[22] M. Mazuran, E. Serra, and C. Zaniolo, “Extending the power of datalog
recursion,” The VLDB Journal, vol. 22, no. 4, pp. 471–493, 2013.

[23] Y. Bu, V. Borkar, M. J. Carey, J. Rosen, N. Polyzotis, T. Condie,
M. Weimer, and R. Ramakrishnan, “Scaling datalog for machine learning
on big data,” arXiv preprint arXiv:1203.0160, 2012.

[24] G. Jeh and J. Widom, “Simrank: a measure of structural-context
similarity,” in Proceedings of the eighth ACM SIGKDD international

conference on Knowledge discovery and data mining. ACM, 2002, pp.
538–543.

[25] C. Manning, R. PRABHAKAR, and S. HINRICH, “Introduction to
information retrieval, volume 1 cambridge university press,” Cambridge,

UK, 2008.
[26] V. Rastogi, A. Machanavajjhala, L. Chitnis, and A. D. Sarma, “Finding

connected components in map-reduce in logarithmic rounds,” in Data

Engineering (ICDE), 2013 IEEE 29th International Conference on.
IEEE, 2013, pp. 50–61.

[27] T. Parr, The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.
[28] J. Gray et al., “The transaction concept: Virtues and limitations,” in

VLDB, vol. 81. Citeseer, 1981, pp. 144–154.

[29] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil,
“A critique of ansi sql isolation levels,” in ACM SIGMOD Record,
vol. 24, no. 2. ACM, 1995, pp. 1–10.

[30] K. Zhao and J. X. Yu, “All-in-one: Graph processing in rdbmss re-
visited,” in Proceedings of the 2017 ACM International Conference on

Management of Data. ACM, 2017, pp. 1165–1180.
[31] Y. Yu, P. K. Gunda, and M. Isard, “Distributed aggregation for data-

parallel computing: interfaces and implementations,” in Proceedings of

the ACM SIGOPS 22nd symposium on Operating systems principles.
ACM, 2009, pp. 247–260.

[32] M. Onizuka, H. Kato, S. Hidaka, K. Nakano, and Z. Hu, “Optimization
for iterative queries on mapreduce,” Proceedings of the VLDB Endow-

ment, vol. 7, no. 4, pp. 241–252, 2013.
[33] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “Haloop: Efficient

iterative data processing on large clusters,” Proceedings of the VLDB

Endowment, vol. 3, no. 1-2, pp. 285–296, 2010.
[34] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Community

structure in large networks: Natural cluster sizes and the absence of large
well-defined clusters,” Internet Mathematics, vol. 6, no. 1, pp. 29–123,
2009.

[35] J. Leskovec and J. J. Mcauley, “Learning to discover social circles in
ego networks,” in Advances in neural information processing systems,
2012, pp. 539–547.

[36] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[37] S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl, “Spinning fast
iterative data flows,” Proceedings of the VLDB Endowment, vol. 5,
no. 11, pp. 1268–1279, 2012.

[38] L. Passing, M. Then, N. Hubig, H. Lang, M. Schreier, S. Günnemann,
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