
RTScan: Efficient Scan with Ray Tracing Cores
Yangming Lv
Fudan University

ymlv21@m.fudan.edu.cn

Kai Zhang*
Fudan University

zhangk@fudan.edu.cn

Ziming Wang
Fudan University

wangzm22@m.fudan.edu.cn

Xiaodong Zhang
The Ohio State University
zhang@cse.ohio-state.edu

Rubao Lee
Freelance Researcher
lee.rubao@ieee.org

Zhenying He
Fudan University

zhenying@fudan.edu.cn

Yinan Jing
Fudan University

jingyn@fudan.edu.cn

X. Sean Wang
Fudan University

xywangCS@fudan.edu.cn

ABSTRACT
Indexing is a core technique for accelerating predicate evaluation
in databases. After many years of effort, the indexing performance
has reached its peak on the existing hardware infrastructure. We
propose to use ray tracing (RT) cores to move the indexing perfor-
mance and efficiency to another level by addressing the following
technical challenges: (1) the lack of an efficient mapping of predi-
cate evaluation to a ray tracing job and (2) the poor performance
by the heavy and imbalanced ray load when processing skewed
datasets. These challenges set obstacles to effectively exploiting RT
cores for predicate evaluation.

In this paper, we propose RTScan, an approach that leverages RT
cores to accelerate index scans. RTScan transforms the evaluation
of conjunctive predicates into an efficient ray tracing job in a three-
dimensional space. A set of techniques are designed in RTScan,
i.e., Uniform Encoding, Data Sieving, and Matrix RT Refine, which
significantly enhances the parallelism of scans on RT cores while
lightening and balancing the ray load. With the proposed tech-
niques, RTScan achieves high performance for datasets with either
uniform or skewed distributions and queries with different selec-
tivities. Extensive evaluations demonstrate that RTScan enhances
the scan performance on RT cores by five orders of magnitude and
outperforms the state-of-the-art approach on CPU by up to 4.6×.

PVLDB Reference Format:
Yangming Lv, Kai Zhang, Ziming Wang, Xiaodong Zhang, Rubao Lee,
Zhenying He, Yinan Jing, and X. Sean Wang. RTScan: Efficient Scan with
Ray Tracing Cores. PVLDB, 17(6): 1460 - 1472, 2024.
doi:10.14778/3648160.3648183

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/AntaresAlice/RTScan.

1 INTRODUCTION
Tables are generally stored in a denormalized form in modern data
warehouses, where the evaluation of selection predicates domi-
nates the query processing time. Therefore, various indexes and
algorithms have been proposed to accelerate scans on CPUs in

∗ represents the corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 6 ISSN 2150-8097.
doi:10.14778/3648160.3648183

recent years. Representative scan implementations include Zone
Maps [16], Bitweaving [14], and Column Sketches [9]. As the state-
of-the-art scan approach, BinDex [13] achieves up to 2.9× higher
performance than the runner-up. By limiting the number of mem-
ory accesses and trading more memory for higher performance,
BinDex leaves little room for further optimizations on the CPU.

Current commodity GPUs adopt ray tracing (RT) cores to accel-
erate the real-time rendering of three-dimensional scenes. RT cores
launch rays into the space to quickly locate intersected objects.
With a set of optional shaders, RT cores can perform user-defined
actions when a ray intersects an object, which offers flexibility to
implement diverse tasks. There is a spectrum of studies that utilize
RT cores to accelerate data processing, e.g., K-nearest neighbor
search [18, 32], DBSCAN [17], and range minimum queries [15].
When utilizing RT cores for data processing, data are represented
by primitives like triangles or spheres that are placed in a three-
dimensional space. Queries are transformed into rays that intersect
the primitives for fast searching. Since only the data that satis-
fies the specified conditions needs to be touched, RT cores have
demonstrated the potential to accelerate database operations.

A straightforward transformation of a scan into a ray tracing
job can be highly inefficient. For instance, RTIndex [8] represents
each value in a column as a triangle, where the value defines its
X-coordinate in the space. For a predicate 𝑥 > 𝑎, RTIndex launches
a ray parallel to the X-axis from (𝑎, 0, 0) to (𝑋𝑚, 0, 0), where 𝑋𝑚 is
the maximum value in the column. The ray would intersect any
triangle whose represented value satisfies the predicate, but its
performance is orders of magnitude lower than that of BinDex [13].

Such a straightforward transformation of scan on RT cores fails
to utilize the hardware effectively. We have identified the following
reasons for the low performance: 1) When evaluating a predicate
with a high selectivity on a large dataset, rays have an enormous
number of intersections to process, resulting in extremely low per-
formance. 2) For datasets with non-uniform data distributions, the
workload of rays is severely imbalanced, where some rays may
have to handle much more intersections than others. 3) The sim-
ple transformation of the scan to a ray tracing job lacks sufficient
parallelism, leaving the RT cores underutilized. Overall, RT cores
achieve high performance only when launching a massive number
of rays with a light and balanced load, which demands an effective
job transformation with an elaborate design for scans.

In this paper, we propose RTScan, an approach that efficiently
accelerates scans on RT cores. First, RTScan transforms the eval-
uation of conjunctive predicates into a ray tracing job in a three-
dimensional space. All data records are built as cubes and placed
in a three-dimensional space, while the conjunctive predicates are

https://doi.org/10.14778/3648160.3648183
https://github.com/AntaresAlice/RTScan
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3648160.3648183

transformed into a set of rays to intersect all the data records in
the query area. By evaluating multiple predicates simultaneously,
RTScan significantly enhances the scan efficiency by avoiding the
multiple data accesses in columns as traditional scans. Moreover,
with data records being scattered in a three-dimensional space,
more rays can be launched for better parallelism. Second, RTScan
proposes a series of techniques to address the inefficiencies of the
existing implementation, which makes scans on RT cores extremely
fast. The three main techniques are as follows. (1) Uniform Encoding:
For a dataset with skewed distribution, RTScan matches the data
ranges of the attributes in a group and encodes the values to map
them uniformly into the space. It balances the load of launched
rays for datasets with skewed data distributions. (2) Data Sieving:
To avoid the large amounts of intersections for predicates with
high selectivity, a set of sieving bit vectors is built to store approxi-
mate results for predicates. By selecting a vector that contains the
approximate results for a predicate, RT cores only need to inter-
sect records in a small region, which significantly alleviates the
ray load. (3) Matrix RT Refine: RTScan proposes a specific way of
casting rays, which adopts cubes as the primitive to reduce the
costs for intersection tests and launches short rays with spacing
to lighten the traversal costs in the index for primitives. With the
above techniques, RTScan notably enhances the scan efficiency.

The contributions of this paper are as follows:
• We propose RTScan, an approach that maps the evaluation

of conjunctive predicates to an efficient ray tracing job in a
three-dimensional space.

• We propose three techniques to optimize the scan perfor-
mance, namely Uniform Encoding, Data Sieving, andMatrix
RT Refine, which not only enhance the parallelism but also
effectively lighten and balance the load of rays.

• We implement the prototype of RTScan and intensively
evaluate its performance under diverse workloads and con-
figurations.

Experimental results show that RTScan significantly improves
the scan performance with RT cores and achieves up to 4.6× higher
performance than the state-of-the-art CPU-based approach.

2 BACKGROUND AND MOTIVATION
2.1 Background of Ray Tracing
Ray tracing is a rendering technique for generating highly realistic
lighting effects, which simulates the behavior of rays as they inter-
act with objects[20]. To accelerate the ray tracing performance, the
latest commodity off-the-shelf GPUs incorporate RT cores, which
are specialized hardware to quickly search primitives and calculate
the ray intersections. Besides the mainstream desktop and worksta-
tion GPUs from NVIDIA and AMD, e.g., NVIDIA’s RTX 40 series
and AMD’s RX 7000, data center GPUs including NVIDIA A40 and
T4 also support ray tracing. Moreover, the Apple M3 and A17 Pro
chip have integrated RT cores to support hardware-accelerated ray
tracing. The NVIDIA OptiX is a programming framework for accel-
erating ray tracing algorithms with RT cores. With the abstraction
from OptiX, a ray tracing job primarily involves two types of enti-
ties: rays and primitives. Ray tracing renders a three-dimensional
scene containing a set of primitives. The primitives include trian-
gles, spheres, and custom primitives defined by programmers. A ray

is parameterized by an origin coordinate 𝑂 and a direction vector
𝐷 [25]: 𝑅(𝑡) = 𝑂 + 𝑡𝐷 , where 𝑡 is a range that specifies the ray
segment on the line.

In OptiX, primitives are wrapped by bounding volumes, like
Axis-Aligned Bounding Boxes (AABBs). AABBs are organized as
a Bounding Volume Hierarchy (BVH) tree to accelerate traverse.
RT cores traverse the BVH tree and identify ray intersections with
primitives, where the intersection program in OptiX is called to
check if any primitive in a leaf node of the BVH tree is intersected.
If an intersection is detected, the user-defined function in the inter-
section program is called to process the intersection information and
execute user-defined actions. There are also the closest hit program
and the miss program, which are called when a ray intersects the
closest primitive or doesn’t intersect any primitive, respectively.
These programs offer great flexibility for RT cores to implement
various data processing jobs. Therefore, RT cores have been uti-
lized to accelerate data processing, including K-nearest neighbor
search [3, 18, 32], DBSCAN [17], and minimum range queries [15].

2.2 Utilizing RT Cores for Scan
RTIndex [8] is a study that uses RT cores for data scans. In RTIndex,
values are represented by triangles in the space. For a value 𝑘 , the
vertexes of its represented triangle are (𝑘 − 0.5, 0.5,−0.5), (𝑘 −
0.5,−0.5,−0.5), and (𝑘 + 0.5, 0, 0.5). There are different ways to cast
rays for queries in RTIndex. As shown in Figure 1a, for a point query
𝑥 = 𝑎, a ray is cast perpendicular to the X-axis. The ray originates
at (𝑎, 0,−𝜖), and the ray length is 2𝜖 , where 𝜖 is a small value so that
the origin of the ray is close to the X-axis. Figure 1b demonstrates
how a range query is evaluated in RTIndex. For 𝑎 ≤ 𝑥 ≤ 𝑏, a ray is
cast in parallel to the X-axis. It originates at (𝑎 − 𝜖, 0, 0) and ends
at (𝑏 + 𝜖, 0, 0). When there is an intersection, the Any-Hit Program
is called to fetch the record ID and set the result.

For point queries, RTIndex achieves slightly higher performance
than B-Tree on GPU [1] and Warpcore [11]. However, RTIndex
performs poorly for range queries, where BinDex achieves an av-
erage of 22595× higher performance than RTIndex on a uniform
dataset with 1 × 108 data. The main reason is that RTIndex cannot
effectively exploit the parallelism of RT cores since it only launches
one ray for a range query, while the GPU contains 82 RT cores.
Consequently, when the selectivity is 0.5, RTIndex has to handle
around 5 × 107 intersection tests with only one ray, where parts of
the traversal and intersection tests are serial1.

2.3 RTc1: An Attempt to Improve the Scan
Performance

We make our first attempt to enhance scan performance and build
RTc1, an implementation that enhances the parallelism of range
queries. As shown in Figure 1c, RTc1 still uses triangles as the
primitives. The coordinates of a triangle that represents a value 𝑘
are (𝑘 +𝑠, 0, 0), (𝑘, 0, 𝑠), and (𝑘, 𝑠,−𝑠), where 𝑠 defines the size of the
triangles. The length of the line segment on the X-axis that overlaps
with the projection of a triangle on the XZ plane is equal to 𝑠 . As
shown in Figure 1c, for a predicate 𝑎 < 𝑥 < 𝑏, instead of casting a
ray in parallel to the X-axis like RTIndex, RTc1 casts (𝑏 − 𝑎)/𝑙 rays
1https://forums.developer.nvidia.com/t/does-a-ray-traverses-the-acceleration-
structure-in-parallel-when-calling-optixtrace/264585 (last accessed 2024/2/18)

b) RTIndex Range Query

a) RTIndex Point Query

x

x
c) Our improvement for

Range Query (RTc1)

z

y

x

Figure 1: How RTIndex and RTc1
work

Figure 2: Performance comparison
of range scan on one column

a) One dimension c) Three dimensions

m n m1 n1

b) Two dimensions

m2

n2

d) The way of

casting rays in RTc3

Query AreaData Space Ray

X

Y
Z

Figure 3: Data distribution in multi-dimensional
spaces

perpendicular to the XZ-plane from (𝑎, 0, 0) to (𝑏, 0, 0) in a fixed
interval 𝑙 (𝑙 = 𝑠 − 𝜖). The 𝑖-th ray originates from (𝑎 + 𝑖 · 𝑙, 0, 0),
and its length is equal to 𝑙 . The interval between two adjacent rays
equals 𝑙 because some primitives will be missed if the interval is
larger, while there will be repetitive intersections with a smaller
interval. Comparing to RTIndex, RTc1 launches more rays to exploit
the parallelism from RT cores.

Figure 2 compares the performance between RTc1, RTIndex, and
BinDex on a uniform dataset with 108 data records. In the experi-
ments, the CPU is Intel Core i9-10900K, and the GPU is NVIDIA
Geforce RTX 3090. RTc1 effectively enhances the RT performance
and its optimal configuration achieves an average of 3859.6× per-
formance improvement over RTIndex. Taking selectivity = 0.5 as
an example, RTc1 launches 9 × 103 rays. With a total of 5 × 107
intersection tests, each ray handles 5.6×103 tests on average, which
is four orders of magnitude less than that in RTIndex. However,
RTc1 is still, on average, 20.3× slower than BinDex, which is the
state-of-the-art implementation on the CPU.

3 RT FOR SCANWITH CONJUNCTIVE
PREDICATES AND THE CHALLENGES

In this section, we make our second attempt by transforming a
scan with conjunctive predicates into a ray tracing job in a three-
dimensional space and analyzing its performance.

3.1 Opportunities of RT Cores for Conjunctive
Predicates and Our Second Attempt: RTc3

Inmodern datawarehouses, tables are stored in denormalized forms,
where the evaluation of selection predicates dominates the query
processing time [10]. Moreover, decision support queries generally
involve many conjunctive predicates, like 𝑝1

⋀︁
𝑝2

⋀︁
...
⋀︁
𝑝𝑛 . Be-

cause common subexpression elimination (CSE) is a widely adopted
optimization that combines the evaluation of predicates on the same
attribute, we consider conjunctive predicates after CSE so that each
predicate evaluates a unique column.

RT cores are designed for performing ray operations in a three-
dimensional space, perfectly fitting for evaluating conjunctive pred-
icates on three columns. Therefore, we make our second attempt
and propose RTc3, which evaluates conjunctive predicates on three
columns with only one RT job. In RTc3, cubes are used as the custom
primitive, which is more effective in reducing the number of inter-
section tests (Please refer to Section 4.4 for detailed discussion). For
each data record, the values of the three attributes are used as the co-
ordinates of the center point of the corresponding cube in the space.
With three conjunctive predicates, a cuboid region in the space

needs to be scanned, where each predicate defines one side of the
cuboid (Figure 3c). For a query in RTc3, a set of rays perpendicular
to the XY-plane is cast into the cuboid (Figure 3d). For example, for a
query (𝑥 < 𝑎) ∧ (𝑦 < 𝑏) ∧ (𝑧 < 𝑐), a cuboid from (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛)
to (𝑎, 𝑏, 𝑐) needs to be scanned, where 𝑥𝑚𝑖𝑛 denotes the smallest
value of the column. 𝑎 · 𝑏/𝑘2 rays are cast perpendicular to the
surface extending from (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛) to (𝑎, 𝑏, 𝑧𝑚𝑖𝑛), where 𝑘
is the ray interval in the X and Y directions. The ray length is set to
𝑐 − 𝑧𝑚𝑖𝑛 to cover the entire cuboid. By setting the cube width to be
the ray interval plus 𝜖 , all the primitives in the query area can be
intersected. If a ray intersects a cube, the represented data record
is checked to confirm that all three predicates are satisfied.

There are two main advantages of using RT cores for evaluating
conjunctive predicates. First, instead of placing primitives only on
the X-axis, RTc3 scatters primitives in the three-dimensional space.
Therefore, more rays can be launched in the cuboid to enhance
the parallelism. Second, RTc3 reduces the amount of data to scan.
There are a spectrum of studies that optimizes the evaluation of
conjunctive predicates [12, 19, 23, 31]. Assuming the selectivity for
the 𝑘th predicate is 𝑆𝑘 . If three conjunctive predicates are evaluated
with logical-and (&), the overall number of data to scan is (𝑆1 +
𝑆2 + 𝑆3) · 𝑁 , where 𝑁 is the total number of data records. For
approaches with branching-and(&&), the evaluation starts from
the column with the lowest selectivity, and the amount of scanned
data is (𝑆1 + 𝑆1 · 𝑆2 + 𝑆1 · 𝑆2 · 𝑆3) · 𝑁 . Instead, RTScan touches a
much smaller number of data records. As shown in Figure 3b, if
two conjunctive predicates are mapped to a two-dimensional space,
the number of data records to scan becomes 𝑆1 · 𝑆2 · 𝑁 . Therefore,
the number of data to scan in RTc3 is 𝑆1 · 𝑆2 · 𝑆3 · 𝑁 (Figure 3c),
which is much smaller than the previous approaches.

3.2 Evaluation and Analysis of Conjunctive
Predicates on RT Cores

We evaluate and analyze the performance of RTc3, RTc1, and BinDex
on various workloads. In evaluating BinDex and RTc1, we perform
scans on columns separately and merge their results with bitwise
AND operations. Through experiments and analyses, we find three
main challenges to building efficient scans on RT cores.

Challenge 1: Poor Performance with Large Amounts of
Intersection Tests. Figure 4 compares the performance of RTc3,
RTc1, and BinDex on a dataset with a uniform data distribution. The
selectivity on the X-axis denotes the selectivity of each predicate.
The performance of an RT job is closely related to the number of
intersection tests involved, which depends on the dataset volume
and the predicate selectivity. RTc3 achieves up to 23.8× performance

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Selectivity

0
20
40
60
80

100
120
140

Ti
m

e
(m

s)

Bindex-CPU RTc1 RTc3

Figure 4: Performance of RTc3 on a
dataset with uniform data distribution

Figure 5: Performance of RTc3 on a
dataset with skewed data distribution

Figure 6: Performance of RTc3 on a
dataset with small data ranges

improvement over RTc1. Taking selectivity = 0.2 as an example,
RTc1 casts 1.0× 104 rays and has 6.0× 107 intersection tests, which
means each ray handles around 5574 intersection tests on average.
Instead, RTc3 casts 6.4×103 rays and has 8.7×105 intersection tests,
where each ray only has to handle 136 intersection tests on average.
Compared to BinDex, RTc3 is 3.0× faster for predicates with a
selectivity of less than or equal to 0.4. However, for selectivities
larger than 0.4, BinDex achieves much higher performance than
RTc3. This is because a higher selectivity leads to a larger query
area, where the number of rays and intersections increase sharply.
For example, 1.3× 105 rays are launched with 7.9× 107 intersection
tests when the selectivity is 0.9. Consequently, handling two orders
of magnitude more intersections breaks the advantage of RT cores.

Challenge 2: Imbalanced Load with Skewed Data Distribu-
tion. Figure 5 demonstrates the performance with skewed work-
loads. There are three datasets following Zipf distribution with
𝛼 = 1.1/1.3/1.5 and a dataset following normal distribution with
𝜇 = 231 and 𝜎 = 1. The selectivity of each predicate in the evalua-
tion is 0.9. The green dotted line shows the processing time of RTc3
on a uniform dataset with the same selectivity, which is around
1037× lower than that with skewed distributions on average. In
skewed data distribution, a large amount of primitives cluster and
overlap with each other in a few small regions. As a result, only
a few rays intersect with primitives, and the rays need to handle
a large number of intersections. Taking the Zipf distribution with
𝛼 = 1.3 as an example, 90% records are aggregated in [0, 1242] while
only 10% are scattered in [1242, 232]. To optimize the average per-
formance for predicates with varying selectivities, the ray interval
is set as 232/400. As a result, when the selectivity equals 0.9, only
one ray is cast in the range of [0, 1242], and it needs to handle all
the 9.8 × 107 intersection tests. Therefore, a skewed dataset results
in an imbalanced ray load and, thus, low performance.

Challenge 3: Poor Parallelism for Attributes with Small
Data Ranges. An attribute’s data range equals the difference be-
tween the maximum and the minimum value. When there are many
data records with a much smaller data range, there would be repet-
itive values in a column. As a result, only a limited amount of rays
can be launched for the small data range, while each ray has to
make a large number of intersections. Figure 6 compares the perfor-
mance of RTc3 on datasets that contain 108 data records but with
different data ranges, i.e., [0, 26) and [0, 232). When we say the data
range is [0, 26), the data ranges of all the three attributes are from
0 to 26. As shown in the figure, because of the limited parallelism
in a smaller space, RTc3 with the data range of [0, 26) shows 22% -
3.7× lower performance than that with the data range of [0, 232).

Query
Final

Result

Data

Sieving

Query

Encoding

Matrix

RT Refine

Build

Scan

············ ······

Data Uniform data

······

Sieving bit vectors

MergeSplit

Data

Encoding

Predicate

Group n

Predicate

Group 1

(Predicate 1,2,3)(Predicate 1,2,3)

Figure 7: The workflow of RTScan

Overall, the above challenges need to be addressed to fully exploit
the capability of RT cores.

4 RTSCAN DESIGN AND IMPLEMENTATION
4.0.1 The Approach of RTScan. After developing and evaluating
RTIndex, RTc1, and RTc3, we analyze the inefficiencies of these im-
plementations and propose RTScan, which proposes the following
three main techniques to address the challenges.

• Uniform Encoding uniformly distributes data records in the
space to reduce the number of ray intersections and balance
the ray load. Meanwhile, the data range is adjusted to enable
sufficient parallelism.

• With the encoded base data, Data Sieving generates an
approximate result to reduce the number of intersected
data records dramatically. With Data Sieving, only a small
region in the space needs to be detected by rays for queries
with any selectivities.
• Matrix RT Refine uses cubes as the primitive and proposes a

way of launching rays with a specific interval and spacing
to enhance the parallelism while reducing repetitive ray
intersections and the BVH traversal overheads.

4.1 Overview
4.1.1 The Workflow of RTScan. The workflow of RTScan is shown
in Figure 7. In index-building, each attribute is encoded with Uni-
form Encoding by CPU to map the data uniformly in an appropriate
range, then the encoded data are transferred into the GPU device
memory. The encoded attribute are composed as attribute groups,

where each attribute group consists of three attributes. A BVH
(Bounding Volume Hierarchy) tree is built for each attribute group
to map the data in a three-dimensional space with customized prim-
itives. After that, sieving bit vectors are built for each encoded
attribute and stored in the GPU memory. The main index building
procedures, i.e., building the BVH tree and the sieving bit vectors,
are executed within the GPU memory. The constructed BVH trees
for different attribute groups can be cached in the GPU memory
and loaded to perform ray tracing jobs when needed2.

Conjunctive predicates are firstly divided into several predicate
groups according to the pre-built BVH trees. When the number of
conjunctive predicates is not divisible by three, the last predicate
group may have one or two predicates. For each predicate group,
its BVH tree in the GPU memory is set for RT cores to traverse.
The procedure of evaluating each predicate group consists of three
steps. First, each predicate is mapped to the space of the uniformly
encoded data. Second, sieving bit vectors for the involved attributes
are selected to get the approximate results, which filter a large por-
tion of the data. Third, Matrix RT Refine launches rays to intersect
cubes in the remaining areas to refine the approximate results by
Data Sieving. With the evaluation results from all predicate groups,
their results are merged by CUDA cores as the final result with
bitwise AND operations. With the techniques, RTScan achieves high
efficiency for conjunctive predicates on diverse workloads.

4.2 Uniform Encoding
Uniform Encoding encodes the values of each attribute to address
challenges 2 and 3 by launching more rays with a balanced load.
Uniform Encoding aims at 1) mapping each attribute in a predicate
group to have an appropriate data range and 2) mapping data in
each attribute to be uniformly distributed in the data range. When
achieving the two goals, Uniform Encoding guarantees that the
encoded data still preserves the relative orders in each attribute.
The order-preserving property is to ensure that a query on the
encoded data can still get correct results.

The procedure of Uniform Encoding is as follows. First, the
data range of each column is set the same as 𝑁 , where 𝑁 is the
total number of data records in the denormalized table. Second,
the original data in each column are sorted to get their orders in
the column. For example, a column with data {5, 9, 1, 6} is sorted
as {1, 5, 6, 9}. According to the sorted order, the original data is
encoded as {2, 4, 1, 3} with a data range of 4. ‘5’ is encoded as ‘2’
because it is the second smallest number after sorting. A mapping
table is built as {(1, 1), (5, 2), (6, 3), (9, 4)} to translate the original
data to the encoded data. For a predicate 𝑥 > 5 on the original data,
a binary search is conducted on the mapping table to locate (5, 2),
and the query is encoded as 𝑥 > 2 for evaluation.

For a dataset with a skewed distribution, a value may appear
multiple times in a column. Uniform Encoding uniformly maps all
the values in the space. Thus, repeated values will be encoded as
different values. Figure 8 demonstrates a dataset with nine values
consisting two repetitive ‘3’s and six ‘5’s. The values are first sorted
with their order being recorded. According to their sorting order,
the six ‘5’s are encoded to the interval [4,9], and the mapping table

2https://forums.developer.nvidia.com/t/access-multiple-bvh-parallel/260142 (last ac-
cessed 2024/2/18)

1 5X63X2

1 2 93 4 5 6 7 8

One Dimension

Rays

Rays

Skewed

Dataset

Uniform

Dataset

Mapping

Table

Three Dimensions

Figure 8: Uniform encoding

is constructed as {(1, 1), (3, [2, 3]), (5, [4, 9])}. With the mapping
scheme, the predicate 𝑥 < 5 is mapped to 𝑥 < 4, which is the lower
bound of the interval. Instead, the predicate 𝑥 > 5 is mapped to
𝑥 > 9, which takes the upper bound of the interval. For the query
𝑥 = 5, it is transformed to a BETWEEN operator, i.e., 4 ≤ 𝑥 ≤ 9.

Figure 8 illustrates the effects of uniformly distributing data in
a broader range with Uniform Encoding. With a ray interval of
1, there are five rays launched, with the last ray having six inter-
sections and the third ray having two intersections. Instead, with
Uniform Encoding, nine rays are launched with one intersection
per ray. After performing the Uniform Encoding for each attribute,
data records are distributed sparsely in the space. The technique
not only enhances the parallelism by launching more rays but also
balances the load of the rays for higher performance.

4.3 Data Sieving
With a high selectivity or a large dataset, RT cores need to intersect
a large volume of data, leading to low performance. To achieve
high performance for various workloads, we propose Data Sieving,
which stores approximate results in a set of bit vectors to signifi-
cantly reduce the number of data records to be scanned.

4.3.1 Bit Vectors for Approximate Results. RTScan uses binning to
generate a set of bit vectors 𝐹 for each column, denoted as 𝐹 = { 𝐹1,
𝐹2, ..., 𝐹𝑘 }. The bit vector 𝐹𝑖 pre-stores an order-preserving array
consisting of 𝑁 bits, where 𝑁 is the number of data records in the
table. Each bit in a bit vector 𝐹𝑖 indicates whether the corresponding
value in the column matches the predicate 𝑥 < 𝑋𝑖 or not, where
𝑋𝑖 marks the represented range of 𝐹𝑖 . For datasets with uniform
distributions, the data range is uniformly partitioned to build vec-
tors. For example, if the data range is [1, 𝑁] and the number of bit
vectors is 𝑘 , the difference between the range of each bit vector is
𝐼 = 𝑁 /𝑘 . The sieving bit vectors will be 𝐹 = {𝐹1 : 𝑥 < (1 + 𝐼), 𝐹2 :
𝑥 < (1 + 2 × 𝐼), ..., 𝐹𝑘 : 𝑥 < (1 + 𝑘 × 𝐼)}.

Figure 9 illustrates how the vectors are built for a column of
data. Because 41 (the fifth value) in the raw data is greater than
40, the fifth bit in 𝐹1 is set to 0, while the corresponding bits in the
rest vectors are set to 1. With these bit vectors, the approximate
results of a predicate on the column can be obtained. For example,
for a predicate 𝑥 < 80, the bit vector 𝐹2 : 𝑥 < 70 can be chosen as
the approximate result. However, the bits representing values in
[70, 80) are incorrect as the result, which needs to be corrected with
ray tracing. Other operators are also supported with the same set of
vectors. For example, for a predicate 𝑥 > 80, the bits in 𝐹2 : 𝑥 < 70

1 0 1 0 0 1 0 1

1 1 1 0 1 1 0 1

1 1 1 1 1 1 1 1

32 64 15 96 41 39 77 23Raw Data

𝐹!: 𝑥 < 40

𝐹": 𝑥 < 70

𝐹#: 𝑥 < 98

Bi
t V

ec
to

rs

1 1 1 1 1 1 1 1𝐹$: 𝑥 < 200

…

99

0

0

0

1

…

···

···

···

···

···

Figure 9: Sieving bit vectors for one attribute

a) Query area and
approximate result

b) 1st region to refine c) 2nd region to refine d) 3rd region to refine

Query Area Sieving AreaRefine Region

A2
B2

A3

B3
A1

B1

X

Y

Z

80

90

80

70

60

65

Figure 10: RT refining after Data Sieving with three ‘<’s

are flipped to represent 𝑥 >= 70; therefore, only values in [70, 80]
need to be scanned to refine the results.

The idea of using bit vectors to filter data is also adopted in
BinDex. Differently, due to the encoded data in RTScan, we build
bit vectors with the information from the previous Uniform En-
coding stage. For the originally skewed datasets, although the data
distribution of the encoded data is uniform, a uniform partitioning
would make repetitive numbers be represented in two or more
vectors. For instance, if the encoded data in Figure 8 is built with
two vectors 𝐹1 : 𝑥 < 5 and 𝐹2 : 𝑥 < 10, the six ‘5’s in the original
data are contained in both the vectors. As a result, for a query
𝑥 >= 5, both vectors still need to be refined to get the final results.
To address this issue, RTScan uses the mapping table to pass the
data distribution information for building the vectors. After a uni-
form partitioning of the data range, the borders of each vector are
checked through the mapping table, and RTScan adjusts the vectors
to keep repetitive values in the same vector.

4.3.2 RT Refine after Data Sieving. After Data Sieving is performed
on the three conjunctive predicates, the region to be scanned in
the space dramatically shrinks. Figure 10a demonstrates the evalua-
tion of three conjunctive predicates with the ‘<’ operator. The blue
cuboid represents the query area of the predicate group, and the
approximate result is the yellow cuboid with dotted lines. For exam-
ple, if the predicates in a predicate group are 𝑥 < 80, 𝑦 < 90, 𝑧 < 80,
the coordinates of the diagonal line of the blue cuboid are from
(0, 0, 0) to (80, 90, 80). With the selected approximate bit vectors
for the three columns as 𝐹𝑥 : 𝑥 < 70, 𝐹𝑦 : 𝑦 < 60, 𝐹𝑧 : 𝑧 < 65,
the diagonal line of the yellow cuboid is from (0, 0, 0) to (70, 60,
65). With the approximate results, RTScan only needs to refine the
results in other areas of the blue cuboid.

With Data Sieving, the original query area of the predicate
group is transformed into three much smaller regions, i.e., 1) from
𝐴1 (70, 0, 0) to 𝐵1 (80, 90, 80) in Figure 10b, 2) from 𝐴2 (0, 60, 0) to
𝐵2 (70, 90, 80) in Figure 10c, 3) from 𝐴3 (0, 0, 65) to 𝐵3 (70, 60, 80)
in Figure 10d. With rays being launched to detect values in the
three red cuboids, it significantly reduces the amount of data to
be scanned. As a result, with fewer intersections to handle, the

A B C

a) Triangle: 𝑆 = 2𝑎2 b) Sphere: 𝑆 = 𝜋2𝑎
2 c) Cube: 𝑆 = 𝑎2

Figure 11: Projection of primitives on a 2D plane

overall performance is notably improved. Please note that for other
operators such as ‘>’ or BETWEEN, the refine areas can be different
from that shown in the figure, where three BETWEEN predicates
will lead to six small regions for refining.

4.3.3 Performance Optimization. Positive and negative selec-
tion: After predicate encoding, for a query 𝑥 < 𝐶 , two vectors
𝐹𝑖 : 𝑥 < 𝑋𝑖 and 𝐹𝑖+1 : 𝑥 < 𝑋𝑖+1 can be chosen as its approximate
results, where 𝑋𝑖 < 𝐶 < 𝑋𝑖+1. RTScan improves the performance
by choosing the vector that leads to fewer ray intersections. Since
the encoded data is uniformly distributed, the number of values
to refine can be estimated and compared by calculating the data
ranges. If 𝐶 − 𝑋𝑖 < 𝑋𝑖+1 −𝐶 , 𝐹𝑖 is chosen as the result, we call it
a Positive Selection. In this case, RT cores must refine the bits in
[𝑋𝑖 ,𝐶). Instead, if 𝐶 − 𝑋𝑖 ≥ 𝑋𝑖+1 − 𝐶 , 𝐹𝑖+1 is chosen, the values
in the range [𝐶,𝑋𝑖+1) need to be scanned. This is called Negative
Selection in RTScan. RTScan adaptively selects vectors to minimize
the number of intersections to handle.

The number of sieving vectors: Generally, the more sieving
bit vectors are built, the finer granularity the data are partitioned.
Correspondingly, with less data to be refined for a query, a higher
performance can be achieved. Specifically, with 𝐾 sieving vectors
on𝑁 values, the mathematical expectation of the number of records
to be refined is 𝑁 /4𝐾 . Since more vectors occupy more memory
while a GPU has limited memory space, tradeoffs should be made
between memory consumption and performance.

4.4 Matrix RT Refine
For refining the rest regions after Data Sieving, Matrix RT Refine
is designed to increase the parallelism for RT cores while further
reducing the number of intersections.

4.4.1 Optimization Goal. Through experiments and analysis, we
find that there are two main costs in the ray tracing process: 1)
Intersection Cost that comes from intersection tests of primitives
in the leaf nodes of the BVH tree, where the Intersection Shader is
called; 2) Traversal Cost that comes from the rays that traverse the
non-leaf nodes in a BVH tree, which is performed by the RT cores.
Therefore, our optimization goal in Matrix RT Refine is to reduce
the number of intersection tests while reducing the traversal costs.
The key to reducing the number of intersection tests is to avoid
repeated intersections of a primitive by different rays, which lies in
the primitive selection and the ray interval. Differently, the key to
reducing the traversal costs lies in reducing the total ray length. It
is because a longer ray will touch more areas in the space, causing
more traversals in the BVH tree. Therefore, the design of Matrix
RT Refine is mainly based on the two optimization goals.

4.4.2 Primitive. To reduce the number of intersections, RTScan
uses a cube as the primitive for ray tracing. Among the commonly

Algorithm 1 Pseudo-code of Intersection Shader
Input: predicates 𝑃𝑎, 𝑃𝑏 , 𝑃𝑐 , result bit vector 𝑉
Output: result bit vector 𝑉
1: primIdx← get_primitive_index()
2: [𝑎, 𝑏, 𝑐] ← get_column_value(primIdx)
3: if satisfy(𝑎, 𝑃𝑎) and satisfy(𝑏, 𝑃𝑏) and satisfy(𝑐 , 𝑃𝑐) then
4: set_bit_atomic(𝑉 , primIdx)
5: end if

used primitives, Figure 11 shows the projection of a triangle, a
sphere, and a cube on a 2D plane. The orange points represent a
matrix of rays perpendicular to the projection. Rays have the same
fixed intervals to intersect all primitives in a querying area. Assume
the ray launching interval is 𝑎. To guarantee that a primitive can
be intersected by at least one ray, the minimum projection area of
a triangle is 2𝑎2, while that of a sphere and a cube are 𝜋

2 𝑎
2 and 𝑎2,

respectively. Since primitives can be anywhere in space, a larger
area increases the possibility of being intersected by multiple rays.
Therefore, since a cube has the lowest projection area, RTScan
adopts a cube as the primitive to alleviate the load of RT cores for
intersections. For each data record, the encoded values of the three
attributes are used as the coordinates of the center of its cube.

When the Intersection Shader is called, a primitive is tested to de-
termine whether the associated data record satisfies the predicates
with user-defined conditions. Algorithm 1 shows the pseudo-code
of the Intersection Shader. If the values of the data record match
all the corresponding predicates, the result bit vector from Data
Sieving is refined atomically with the record’s ID.

4.4.3 Ray Interval and Ray Spacing. With a smaller query area
after Data Sieving, the number of rays that can be launched also
becomes less. To minimize the intersection costs while ensuring
that any cube in the query area can be intersected by at least one
ray, the cube width𝑤 should equal the ray interval 𝐼 plus 𝜖 . This
is because cubes that satisfy the predicates may be missed with
𝐼 > 𝑤 while a cube may be repeatedly hit by more than one ray
with 𝐼 < 𝑤 . Therefore, a way of launching more rays is to have
a smaller cube width and, thus, a smaller ray interval. However,
simply launching more rays with a smaller cube width may lead to
low performance. This is because each ray will traverse the BVH
tree as it travels through the query area, which incurs higher BVH
traversal costs.

To address the issue, Matrix RT Refine proposes a new way to
cast rays, which increases the ray number to enhance parallelism
while alleviating the traversal overhead. Figure 12 shows the Matrix
RT Refine adopted in RTScan. From the view of the projection on
the XY-plane, RTScan launches a matrix of rays with a fixed inter-
val, similar to that in RTc3. Differently, RTScan further optimizes
the performance by launching fewer rays from the view of the
XY-plane but many shorter rays in the ray direction with a fixed
spacing. First, Matrix RT Refine enhances parallelism as long rays
are divided into short rays. Second, the BVH tree traversal overhead
is alleviated by reducing the overall ray length with spacing. The
added spacing equals the cube width minus 𝜖 , which avoids missing
any primitive. Figure 13a shows how to launch rays in RTc3, where
one ray has three intersections for three cubes. Figure 13b launches
three connected rays, but there are a total of five intersection tests

Interval

Spacing

Interval

Interval

b) Rays parallel to the YZ-plane c) Rays perpendicular to the XY-plane

xz

y
x

y

a) Rays in the 3D space

y
z

Figure 12: Ray interval and spacing

c) With-Spacing:
2 rays and 3 intersections

b) Without-Spacing:
3 rays and 5 intersections

a) RTc3:
1 ray and 3 intersections

Figure 13: The effect of adding spacing
to rays

Query

Area

Sieving

Area

Rayx

y

Figure 14: RTScan on
two conj. predicates

since the second and third primitive are intersected by two rays.
Figure 13c demonstrates how RTScan launches rays, where two
rays make three intersections but a smaller total length than Fig-
ure 13a. Overall, with a matrix of rays cast in specific intervals
and spacing, all cubes in the querying area can be detected with a
lighter and more balanced load.

4.4.4 Analysis of the Precision Loss. OptiX only supports single-
precision floating-point numbers as the coordinates. However, due
to the encoding scheme of float, there would be precision loss
when transforming an integer larger than 223 into a float. For a
data range of (0, 2𝐾) where 𝐾 > 23, we calculate the maximum
precision loss as follows. For an integer (1.𝑥𝑥𝑥 ...𝑥)2×2𝑆 which can
be represented by float, the nearest integer that can be represented is
(1.𝑥𝑥𝑥 ...𝑥−0.000...1)2×2𝑆 . So the precision loss for the two integers
is (1.𝑥𝑥𝑥 ...𝑥)2 × 2𝑆 - (1.𝑥𝑥𝑥 ...𝑥 − 0.000...1)2 × 2𝑆 = (0.000...1)2 × 2𝑆
= 2𝑆−23. Because the gap 2𝑆−23 is monotonically increasing, the
maximum precision loss for an integer in the range (223, 2𝐾] is 2𝐾
- (1.111...)2 × 2𝐾−1 = 2𝐾−24 after being transformed into a float.
Considering all the potential precision losses for rays and AABB
vertexes, RTScan sets the 𝜖 as 2 times the maximum precision loss,
which is 2𝐾−23. For instance, with 𝐾 = 227, the maximum precision
loss is 8, and 𝜖 equals 16.

4.4.5 RTScan for One or Two Predicates. RTScan divides conjunc-
tive predicates of a query into multiple predicate groups, and the
last group may contain one or two predicates. When scanning one
column with RTScan, cubes are placed along the X-axis like the
one-dimension case in Figure 8, where the X-coordinate of the cube
center is used to represent a data record. After Data Sieving, only
cubes on a line segment on the X-axis need to be refined. Like
RTc1, a series of short rays are launched perpendicular to the line
segment, with a fixed interval equaling the cube width minus 𝜖 .

When evaluating two conjunctive predicates, a data record is
represented by the X-coordinate and the Y-coordinate of its cube
center. As shown in Figure 14, the results for the cubes in the orange
rectangle are obtained after Data Sieving. Therefore, only the area
between the blue rectangle and the orange rectangle needs to be

scanned. Rays are launched perpendicular to the XY-plane, with
a fixed interval equaling the cube width minus 𝜖 . The ray length
equals the cube width to intersect all cubes in the area.

5 EXPERIMENTAL ANALYSIS
5.1 Experiment Setup
Hardware and SoftwareWe run experiments on a server equipped
with an Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz, 32GB DDR4
DRAM, and an NVIDIA GeForce RTX 3090 with 82 RT cores, 10496
CUDA cores, and 24GB VRAM. The operating system is 64-bit
Ubuntu Server 20.04 with Linux Kernel 5.15.0-72-generic. The GPU
programming interface uses CUDA 12.1 and OptiX 7.5.

Workloads We generate uniform and skewed datasets for eval-
uation in the experiments, each with 1 × 108 data records. For the
uniform workload, the attributes are integers uniformly distributed
in [0, 232). Besides, we generate four datasets for evaluating skewed
workloads, including three with Zipf distributions and one with
normal distribution. The attributes of the four datasets are integers
distributed in [0, 232). The probability density for the Zipf distribu-
tion is 𝑝 (𝑘) = 𝑘−𝛼

𝜁 (𝛼) for integers 𝑘 ≥ 1, where 𝜁 is the Riemann Zeta
function, and 𝛼 is the distribution parameter. In the evaluation, the
parameters of the Zipf distributions are set as 𝛼 = 1.1/1.3/1.5, and
the parameters for the normal distribution are 𝜇 = 231 and 𝜎 = 1.
The NumPy package is used to generate the datasets. Specifically,
numpy.random.zipf(𝛼 , size=(𝑚, 𝑛)) is used to generate datasets with
Zipf distribution, where 𝛼 is the skewness, and size=(𝑚, 𝑛) indicates
the generation of𝑚 data records and 𝑛 attributes.

Ray Tracing Configurations Through experiments on RTX
3090, we find that, for a uniform dataset with 1 × 108 records, the
approximate optimal configuration for the ray length is 1.1 × 106,
while that for the ray interval and ray space is 8.3 × 104. To ensure
an intersection, the cube width equals the ray interval plus 𝜖 . 𝜖 is
set for a dataset according to the formula in Section 4.4.4. We adopt
the above configurations for RTScan in the evaluation.

Baselines We compare RTScan against RTIndex, BinDex on
CPU, BinDex on CUDA, and GPU B-Tree [1]. RTIndex3 is the state-
of-the-art scan implementation on RT cores. Since the performance
of RTIndex is orders of magnitude lower than that of CPU-based
implementations, we use BinDex for performance comparison as
it is the state-of-the-art scan approach on the CPU. To effectively
compare the scan performance on RT and CUDA cores, we port
the BinDex implementation to CUDA cores, referred to as BinDex-
CUDA. BinDex-CUDA uses CUDA cores to accelerate the scan
process in BinDex, including copying filter vectors and refining
results, which achieves notable performance improvement. Both
the BinDex implementations and RTScan use 128 bit vectors for
a fair comparison. We also take an open-source GPU B-Tree4 for
performance comparison on CUDA cores.

In evaluating conjunctive predicates, approaches like BinDex,
RTIndex, RTc1, and GPU B-Tree perform scans on the columns
separately and then merge their results to get the final result. There
are studies optimize the order of conjunctive predicates to improve
the performance, where the predicate with the lowest selectivity
is evaluated first to minimize the amount of accessed data. As
3https://gitlab.rlp.net/juhenneb/rtindex (last accessed 2024/2/18)
4https://github.com/owensgroup/MVGpuBTree (last accessed 2024/2/18)

the state-of-the-art implementation, BinDex’s performance is not
sensitive to the predicate selectivity, thus it does not need to reorder
the predicates to optimize its performance. Therefore, the BinDex
implementations on CPU and CUDA cores represent the state-of-
the-art performance on the hardware.

5.2 Performance Improvement of RTScan
A performance comparison between RTIndex, RTc1, RTc3, and
RTScan on a uniform dataset is shown in Figure 15. The perfor-
mance of RTScan is up to 5.4 × 105 higher than that of RTIndex
and up to 106× higher than RTc1. Compared with RTc3, the naive
implementation of evaluating conjunctive predicates in a three-
dimensional space, RTScan also has up to 65× performance im-
provements. We can see that the performance of RTScan stays
relatively stable when the selectivity varies, with a scan time rang-
ing from 1.05 ms to 2 ms. This is because, even with high selectivity,
RTScan only needs to scan a small volume of data records with Data
Sieving. The difference in the execution time of RTScan comes from
the selection of sieving bit vectors, where a query that needs fewer
bits to refine is faster. The time cost of other scan methods increases
when the selectivity increases. Thus, RTScan can achieve higher
performance improvement with a high selectivity. Performance
comparison on skewed datasets is shown in Figure 16, where a
query with a selectivity of 0.9 is evaluated. RTScan has a 1.2 × 105
—2 × 105 times improvement over RTIndex and a 102 —1.7 × 105
times improvement over RTc1. Compared with RTc3, RTScan has a
40 —5.4 × 104 times improvement. Taking 𝛼 = 1.3 as an example,
only one ray hits cubes in RTc3, which has to handle 9.8 × 107
intersection tests. However, in RTScan, 8.9 × 104 rays hit cubes,
and the number of intersection tests is 1.3 × 105. Therefore, the
average number of cubes intersected by each active ray is only 1.5.
This brings RTScan a huge advantage over RTc3. Besides, the more
skewed the dataset is, the higher the improvement RTScan can
achieve over the competitors, which shows the effectiveness of the
proposed techniques, i.e., Uniform Encoding.

The proportion of time spent per stage in RTScan is shown in
Figure 17. The predicates used in the evaluation have the same
selectivity of 0.9. Data Sieving and the merge of sieving bit vectors
account for 24.0% and 14.5%, respectively. The main overhead of
Data Sieving comes from the copying of selected bit vectors, which
is performed by CUDA cores. Query encoding only accounts for
1.2%, which is fast to perform the mapping. Matrix RT Refine has
the highest proportion and accounts for 60.4% of the total time on
average. With a smaller selectivity, Matrix RT Refine would take a
smaller proportion for fewer intersections while the other stages
stay relatively stable.

5.3 Performance Comparison with CPU and
CUDA Cores

To compare the performance of scan on CPU, CUDA cores, and RT
cores, we compare the performance of RTScan against BinDex-CPU,
BinDex-CUDA, and GPU B-Tree for a comprehensive evaluation in
Figure 19. For a CPU-based database, the scan results may need to
be transferred to the host memory after GPU acceleration. There-
fore, we include the data transfer time in the evaluation, which is
marked as the slash part of each bar. Instead, since BinDex-CPU

2X105
4X105
6X105
8X105

RTIndex
RTc1

RTc3 RTScan

0.2 0.4 0.6 0.8
Selectivity

100

101

102

Ti
m

e
(m

s)

Figure 15: Performance im-
provement of RTScan on a uni-
form dataset

Zipf 1.1 Zipf 1.3 Zipf 1.5 Normal
Distribution

100
101
102
103
104
105
106
107
108

Ti
m

e
(m

s)

RTIndex
RTc1

RTc3
RTScan

Figure 16: Performance im-
provement of RTScan on a
skewed dataset

Figure 17: The proportion of
different parts’ time of RTScan

Figure 18: Index construction
overhead

5X103
1X104

1.5X104
2X104

B-Tree-GPU
Bindex-CPU

Bindex-CUDA
RTScan

Transfer time

0.2 0.4 0.6 0.8
Selectivity

0
2
4
6
8

10

Ti
m

e
(m

s)

Figure 19: Performance comparison on
uniform dataset

Zipf 1.1 Zipf 1.3 Zipf 1.5 Normal
Distribution

0
1
2
3
4
5
6
7
8
9

10

Ti
m

e
(m

s)
Bindex-CPU
Bindex-CUDA

RTScan
Transfer time

Figure 20: Performance comparison on
skewed dataset

Q3 Q6 Q17
Query

0

1

2

3

4

Ti
m

e
(m

s)

Bindex-CPU Bindex-CUDA RTScan

Figure 21: Performance of RTScan with
TPC-H dataset

runs on the CPU, it does not need to transfer data. As shown in
the figure, RTScan achieves an average of 3.7× performance im-
provement over BinDex-CPU, up to 1.3 × 104 times improvement
over GPU B-Tree, and an average of 48% improvement over BinDex-
CUDA. For a GPU database with no need to transfer the results
back, RTScan has an average of 17.2× performance advantage over
BinDex-CPU, up to 7.4 × 104 times over B-Tree, and an average
of 90% over BinDex-CUDA. Although BinDex-CUDA also demon-
strates much higher performance than the CPU, its performance
advantage mainly comes from the 10496 CUDA cores. Instead, with
only 82 RT cores, RTScan can also be 90% faster than BinDex-CUDA,
which demonstrates the efficiency of RT cores for scans.

In Figure 20, we evaluate the performance of RTScan on four
datasets with skewed distributions. For highly skewed datasets like
Zipf with 𝛼 = 1.5, most of the data tend to be some specific val-
ues, and we use queries with a selectivity of 0.9 in the evaluation.
GPU B-Tree is not evaluated for skewed distributions because it
only supports scanning datasets with unique keys. As shown in
the figure, when the results are transferred to the host memory,
RTScan has a 4.2−4.6× improvement over BinDex-CPU and a 23.5%-
37.9% improvement over BinDex-CUDA. In a GPU database without
data transferring, RTScan has a 11.3× performance advantage over
BinDex-CPU and a 69.7% improvement over BinDex-CUDA on av-
erage. As stated in section 5.2, with Uniform Encoding, RTScan can
achieve higher improvements for highly skewed datasets. Specif-
ically, for Zipf distribution with 𝛼 = 1.5, RTScan achieves up to
11.8× and 90.3% performance improvements over BinDex-CPU and
BinDex-CUDA, respectively. These results demonstrate that, with
the proposed techniques in RTScan, RT cores can achieve a much

higher efficiency in handling skewed workloads than CPU and
CUDA cores.

5.4 Data and Query Transformation Overhead
In Figure 18, we compare the memory consumption and the index
construction time between RTScan, BinDex-CPU, BinDex-CUDA,
and RTIndex. The dataset is a table containing 1 × 108 data records
with three attributes, which follows a Zipf distribution with 𝛼 = 1.5.
For the specified dataset, RTScan takes 36.8 seconds to construct
the index, which takes 52.3% more time than the BinDex implemen-
tations and 28.1× more time than RTIndex. In RTScan, building the
mapping table for Uniform Encoding and the sieving bit vectors
take 48.2% and 49.5% of the overall index construction time, respec-
tively. The data transformation time, i.e., building the BVH tree
with customized primitives, accounts for 2.3% of the overall time.
In comparison, RTIndex only needs to build the BVH tree, whose
time is similar to that in RTScan.

For the dataset, the index of RTScan consumes 7.6 GB of memory
space, which is 28.8% more than BinDex-CPU, 28.8% more than
BinDex-CUDA, and 65.6% more than RTIndex. The memory allo-
cation in RTScan mainly includes the mapping table for Uniform
Encoding, the sieving bit vectors, and the BVH tree. The mapping
table, which is stored in the host memory, accounts for 1.9% of the
memory space. The sieving bit vectors and the BVH tree are stored
in the device memory, occupying 58.6% and 39.5% of the memory,
respectively. Reducing the sieving bit vectors in RTScan can reduce
its memory usage while preserving its performance advantage. For
instance, when the number of bit vectors is reduced from 128 to 64,
RTScan can achieve an average of 33.7% higher performance than

BinDex-CUDA with 128 vectors, while the memory consumption
is 9.8% lower than that of BinDex-CUDA.

In RTScan, conjunctive predicates need to be transformed into
rays in the three-dimensional space. The query transformation
consists of two main parts: identifying the regions to refine after
Data Sieving and setting up the parameters of rays in these regions,
including ray length, origin, and direction. For a range predicate,
the query transformation time only takes an average of 0.8% of the
overall query execution time. Even for a point query (x = a), which
touches only a small amount of data, the query transformation in
RTScan takes 1.1% of the query time on average.

5.5 Performance Improvement for TPC-H
We evaluate the performance of RTScan with TPC-H 3.0.15. Since
RTScan primarily focuses on scanning three columns, we select Q3,
Q6, and Q17 from the TPC-H queries that fit RTScan’s intended sce-
nario. The predicates in the queries are as follows, which contain ‘<’,
‘>’, ‘=’, and BETWEEN operators. (1) Q3: l_shipdate > “1995-03-15",
o_orderdate < “1995-03-15", c_mktsegment = “BUILDING"; (2) Q6:
l_shipdate between “1994-01-01" and “1995-01-01", l_discount be-
tween 0.05 and 0.07, l_quantity < 24; (3) Q17: p_brand = “Brand#23",
p_container = “MED BOX", l_quantity < 6. We evaluate the average
evaluation time for each query. As shown in Figure 21, RTScan has
a 4.1− 10.4× improvement over BinDex-CPU and 44.8%− 4.7× over
BinDex-CUDA. Specifically, RTScan has a maximum of 10.4× im-
provement over BinDex-CPU in Q17 and 4.7× over BinDex-CUDA
for predicates in Q3. For predicates in Q6, RTScan only achieves
minor improvement over Bindex-CUDA. We analyze the reason
and find that RTScan and BinDex-CUDA only have to refine an
extremely small amount of data in Q6, which is about 3 × 103
data records for RTScan and 1.5 × 104 for BinDex-CUDA. In other
queries, the amount of data to scan is larger; thus, RTScan has a
higher improvement. For example, in Q3, 1.5 × 104 data records
are intersected in RTScan, while 6.1 × 104 values are accessed for
scanning in BinDex-CUDA. On average, RTScan has a 6.8× per-
formance improvement over BinDex-CPU and 2.5× improvement
over BinDex-CUDA, which proves the effectiveness of RTScan for
workloads in production systems.

5.6 Performance of Other Number of Predicates
Figure 22, Figure 23 and Figure 24 show the performance of BinDex-
CPU, BinDex-CUDA, and RTScan on one, two, and four predicates
under a uniform dataset with 1 × 108 records. The execution time
includes the data transfer between host and GPU memory. When
evaluating one predicate, RTScan achieves 9.7% and 22.0% higher
performance than BinDex-CPU and BinDex-CUDA, respectively.
For two predicates, RTScan is 32.0% faster than BinDex-CUDA and
2.1× faster than BinDex-CPU. This demonstrates that RTScan’s
performance is still competitive with less than three predicates.

RTScan divides conjunctive predicates into predicate groups,
where the last group may contain one or two predicates. We take
four conjunctive predicates as an example, which have to be divided
into two predicate groups. There are two different combinations:
either a combination of three columns and one column (3+1) or

5https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf (last
accessed 2024/2/18)

each group contains two columns (2+2). We implemented both ap-
proaches and evaluated their performance in Figure 24. As shown
in the figure, RTScan(2+2) and RTScan(3+1) achieve similar perfor-
mance for different selectivities, where RTScan(2+2) is only 3.2%
faster than RTScan(3+1) on average. Compared with other proces-
sors, RTScan(2+2) demonstrates 5× and 40.0% higher performance
than BinDex-CPU and BinDex-CUDA, respectively. Because a query
with any number of conjunctive predicates can be divided and pro-
cessed by combinations with one, two, or three columns, RTScan
can outperform other approaches for all cases.

5.7 Performance Impact of Encoding
The performance comparison of RTScan with and without Uni-
form Encoding on skewed datasets is shown in Figure 25. RTScan
with Uniform Encoding (w/ EC) delivers 44.6×, 1152×, 16015×, and
1.3× speedup than RTScan without encoding (w/o EC) for the four
skewed datasets, respectively. Under 𝛼 = 1.1/1.3/1.5, the perfor-
mance of RTScan without encoding is abysmal. For the skewed data
distributions, most primitives cluster in some specific locations. As
a result, among the rays cast uniformly into space, only a few can
intersect cubes, while other rays would only incur BVH traversal
overheads. However, there are tens of thousands of cubes for these
hit rays to scan, leading to a significant decrease in parallelism.
Taking 𝛼 = 1.3 as an example, only 6 rays hit the cubes, but the
total number of intersection tests is 1.3 × 105, which means each
ray needs to handle 2.1 × 104 intersection tests on average. Since
certain parts of traversals and intersections are handled serially,
there lacks sufficient parallelism to utilize the RT cores, resulting
in poor performance. However, when Uniform Encoding is used
to scatter the skewed data into the space, 8.9 × 104 rays hit cubes
for the Zipf distribution with 𝛼 = 1.3, and the average number of
cubes intersected by a ray is only 1.48. Therefore, Uniform Encoding
balances the workload of rays and improves the parallelism.

We also evaluate the effectiveness of Uniform Encoding on at-
tributes with small data ranges. The dataset has 1×108 data records,
and the data range of each attribute is from 0 to 26. To prevent the
result from being directly obtained through Data Sieving for the
small range, we use 16 sieving bit vectors in this evaluation. We
compare the performance with the one after encoding, where all
columns have a data range from 0 to 1× 108. As shown in Figure 26,
RTScan has an average of 1.2× performance enhancement over
the one without encoding. The space size formed by the 26 data
range is 218 ((26)3 in the three-dimensional space), smaller than the
number of data records, i.e., 1 × 108. Consequently, around 381 (cal-
culated as 1 × 108/218) cubes congregate at each coordinate in the
space. This limits the parallelism and makes it hard to launch more
rays to improve performance. With a selectivity of 0.8, 2.4 × 105
rays are launched for the 26 data range, and there are a total of
3.1 × 106 intersection tests and more than 13 intersection tests for
each ray. After encoding, 3.8 × 106 rays are launched. With a total
of 3.3 × 106 intersection tests, each ray only makes an average of
0.9 intersection tests. Therefore, with more rays being launched in
a larger space, Uniform Encoding achieves higher parallelism and
greatly lightens the burden of RT cores.

Figure 22: Scan on one column Figure 23: Scan on two
columns

Figure 24: Scan on four
columns

Zipf 1.1 Zipf 1.3 Zipf 1.5 Normal
Distribution

100

101

102

103

104

105

106

Ti
m

e
(m

s)

w/o EC w/ EC

Figure 25: Effect of encoding
on skewed datasets

Figure 26: Performance impact
of encoding on a dataset with
small data ranges

s s+t s+2t s+3t s+4t s+5t
Selectivity

0.0

0.4

0.8

1.2

1.6

2.0

Ti
m

e
(m

s)

Positive and Negative
Only Positive

Figure 27: Positive and nega-
tive selection (s = 93.0%, t =
0.14%)

Figure 28: The reduced data for
scanning with different num-
ber of bit vectors

Figure 29: Scan performance
by varying ray interval (I) and
ray spacing (w is cube width)

5.8 Evaluation of Positive and Negative
Selection

As described in Section 4.3.3 , for a query 𝑥 < 𝐶 (𝑋𝑖 < 𝐶 < 𝑋𝑖+1),
both 𝐹𝑖 : 𝑥 < 𝑋𝑖 (Positive Selection) and 𝐹𝑖+1 : 𝑥 < 𝑋𝑖+1 (Nega-
tive Selection) can be selected as the approximate results. RTScan
optimizes the performance by choosing the vector that requires
refining a smaller amount of data. Figure 27 shows a performance
comparison between the way using only Positive Selection and
the adaptive way in RTScan that chooses the optimal vector. We
take two sieving bit vectors 𝐹110 and 𝐹111 from the first column of
data as an example, where 𝐹110 covers 93% of the entire dataset and
𝐹111 covers 93.7% on a dataset with uniform distribution. Predicate
𝐶 is in the range of [𝑋110, 𝑋111), and we divide the interval [93%,
93.7%] into five parts with an interval t = 0.14% (s = 93%). As shown
in Figure 27, in the first half of the range, i.e., [𝑠, 𝑠 + 2𝑡], where
query𝐶 < (𝑋111−𝑋110)/2, both methods choose Positive Selection
and use 𝐹110 as the vector for refining. Therefore, the scan time
increases with the data that needs refining, i.e., in the range [𝑋110,
𝐶 −𝑋110). In the second half of the range, i.e., [𝑠 + 3𝑡, 𝑠 + 5𝑡], where
query𝐶 > (𝑋111−𝑋110)/2, RTScan chooses Negative Selection and
uses 𝐹111 as the vector for refining. In this case, the amount of data
that needs refining is the range of [𝑋111−𝐶 ,𝑋111], which decreases
as 𝐶 increases. In contrast, Positive Selection keeps using 𝐹110 as
the vector for refining in the second half of the range, resulting in
an increasing amount of data that needs refining (i.e.,𝐶 −𝑋110) and
an increasing scan time as 𝐶 increases. When selectivity comes to
s+5t (93.7%), RTScan has a 1.8× improvement over the one that only
uses Positive Selection. This figure takes 𝐹110 and 𝐹111 as examples
of the effect, while the selectivities between other adjacent vectors
also demonstrate the same pattern.

5.9 Reduced Data for Scanning by Different
Numbers of Vectors

The number of sieving bit vectors in RTScan is the main factor
influencing the performance since it determines the number of data
records to refine. Figure 28 demonstrates the portion of reduced
data for scanning in RTScan with different numbers of bit vectors
on a uniform dataset with 108 data records. Sieve(𝐾) denotes the
Data Sieving with 𝐾 bit vectors, and reduced data for scanning
represents the proportion of data records avoided to scan with Data
Sieving. As demonstrated in the figure, because different numbers
of sieving bit vectors have different partitions on the data range,
the reduced amount fluctuates across different selectivities. For
instance, for 𝑁 data records with 32 sieving bit vectors, the 𝑖th
vectors represent 3.125% · 𝑖 · 𝑁 data records. When 𝐹6 is chosen
for a predicate with 20% selectivity, it filters 18.75%𝑁 values in
the column. The total portion of data records that are avoided for
scanning reaches (18.75)

3

(20)3 = 82.4% with three sieving bit vectors
applied for the conjunctive predicates. On the other hand, 𝐹13 will be
chosen for predicates with 40% selectivity, and the reduced number
of data records for scanning rises to (40)3

(40.625)3 = 95.5%.
The reduced amount increases as the number of sieving bit vec-

tors increases. This is because the data range is partitioned in a
much finer way with more vectors, leading to fewer data records
to be refined with a selected vector. For instance, when the num-
ber of sieving bit vectors increases to 64, adjacent vectors only
have around 1.56%𝑁 different represented data records. The 𝐹13
is chosen with a predicate of 20% selectivity, leading to a 95.5%
reduction of the scanned data record, which is 13.1% higher than
that of Sieve(32) (82.4%). Because more bit vectors lead to more

memory consumption, users can choose fewer vectors with a minor
influence on the performance.

5.10 Performance Impact of Ray Interval and
Ray Spacing

Figure 29 presents a comparative analysis of scan performance
while varying the ray interval (𝐼) and ray spacing (𝑆). The value of
ray interval and ray spacing in the figure is its proportion to the
cube width (𝑤), where 𝐼 = 0.5𝑤 means the ray interval equals half
of the cube width. With a fixed ray interval, when the ray spacing
increases from 0 to𝑤 , the performance of RTScan improves. This
is because an increased ray spacing leads to a lower BVH traversal
overhead and fewer intersection tests. Specifically, when the ray
interval is equal to the cube width (𝐼 = 𝑤), the performance of 𝑆 = 𝑤

has a 47% performance improvement over that of 𝑆 = 0, and for 𝑆 =

𝑤 , there are 2.56×105 rays and 2.29×105 intersection tests, whereas
for 𝑆 = 0, there are 2.76 × 105 rays and 2.45 × 105 intersection tests.
With a fixed ray spacing, RTScan delivers improved performance as
the ray interval increases. This is because an increased ray interval
means fewer rays to be launched, which leads to a lower BVH
traversal overhead. Moreover, with the same cube width, fewer
rays lead to fewer intersections. Specifically, when the ray spacing
is equal to the cube width𝑤 , RTScan with 𝐼 = 𝑤 outperforms that
with 𝐼 = 0.25𝑤 by 70%. There are 3.84 × 106 rays and 3.44 × 106
intersection tests for 𝐼 = 0.25𝑤 , and that for 𝐼 = 𝑤 is described
above.

6 RELATEDWORK
Accelerating scan operations Scan operations generally include
sequential scans and index scans. Various techniques have been
investigated to accelerate sequential scans, such as compression [2,
27], and scan sharing [6, 21, 22]. Traditional secondary indexes, such
as bitmaps, B-trees, and their variations, are commonly employed
for categorical data with low cardinality or numerical data with
a low selectivity[24, 30]. For a predicate with a high selectivity,
lightweight indexes [16, 28, 29] adopt statistic information to skip
data in sequential scan, but they can be less effective when the data
are uniformly distributed. The early pruning techniques, including
Bitweaving [14] and ByteSlice [4], and Column Sketches [9], use
either bit-level storage or data compression to reduce the amount
of touched memory in sequential scan. BinDex [13] is an index
that uses bitmaps as the filters to avoid accessing most data for a
predicate. It outperforms existing approaches for predicates with
all selectivities.

Conjunctive predicates Several commercial systems, includ-
ing Vectorwise [26, 33], a prominent column store designed for
analytical workloads, prioritize predicates based on ascending se-
lectivity without consideration of their costs. There are some other
optimization techniques for conjunctive predicates, with a focus on
determining the optimal evaluation order of selection predicates
with cost models or selectivity estimation [7, 12, 19, 23]. In addition,
Wang et al. [31] propose an order-oblivious execution scheme to op-
timize the evaluation of conjunctive predicates. Note that, because
RTScan evaluates three predicates at the same time, it achieves
high performance for a predicate group without considering their
evaluation orders.

7 DISCUSSION
The performance advantage of RTScan: The performance ad-
vantage of RTScan comes from two aspects. 1) As discussed in
Section 3.1 for RTc3, RTScan evaluates three conjunctive predicates
in one RT job and only needs to scan 𝑆1 · 𝑆2 · 𝑆3 · 𝑁 data records,
where 𝑆𝑘 denotes the selectivity of the k-th predicate. With Data
Sieving, the amount of touched data is further reduced. 2) RTScan
efficiently transforms data scans as an RT job and leverages RT
cores for hardware acceleration. RTScan can benefit from the fast
GPU advancement. While the NVIDIA RTX 3090 has 82 RT cores,
the RTX 4090 GPU has 128 third-generation RT cores with two to
three times performance improvement.

The integration of RTScan: The integration of RTScan in a
database system depends on the underlying execution model. For
a database system with a materialization model, like MonetDB
and VoltDB, RTScan can be integrated by using it as the selection
operator. Most GPU databases adopt a materialization model and
can directly adopt RTScan as the selection operator. Besides, RTScan
can further improve the performance and GPU hardware utilization
by utilizing both CUDA and RT cores for query processing.

When data is updated, the BVH tree should be rebuilt, while the
mapping table and the sieving bit vectors need to be updated. As
shown in Section 5.4, it takes a non-trivial cost to build the index
of RTScan. Therefore, RTScan is currently only fit for handling
workloads with infrequent updates.

Handling disjunctive predicates: The paper only discusses
conjunctive predicates, while the evaluation of disjunctive predi-
cates needs further studies. There are two ways to support disjunc-
tive predicates. One way is transforming disjunctive predicates into
conjunctive predicates [5]. For example, predicates (𝐴∧ 𝐵 ∨𝐶) can
be transformed into !(!(𝐴 ∧ 𝐵)∧!𝐶). However, this scheme cannot
leverage the advantage of RT cores because only (𝐴 ∧ 𝐵) can be
evaluated on RT cores, while other operations like bitwise NOT and
the evaluation of𝐶 has to be performed on CUDA cores. The second
way is to identify the involved query areas in the three-dimensional
space and launch rays to intersect the primitives that satisfy the
predicates. For predicates like (𝐴 ∧ 𝐵 ∨𝐶), there would be several
separate query areas scattered in the space, especially after Data
Sieving is applied. It requires a more complex query transformation
mechanism to cover all areas of the predicates. Moreover, it may
need to reevaluate the efficiency of RT cores for such predicates.
We take it as a future work.

8 CONCLUSION
Through intensive evaluation and design space exploration, we an-
alyze and identify the performance bottlenecks when utilizing RT
cores to accelerate scans. Based on the analyses of workload char-
acteristics and their impact on performance, we propose RTScan, a
scan approach that efficiently maps the evaluation of conjunctive
predicates into a ray tracing job. RTScan is designed with three key
techniques, i.e., Uniform Encoding, Data Sieving, and Matrix RT
Refine. These techniques significantly accelerate RTScan on various
workloads by enhancing the parallelism and alleviating and bal-
ancing the ray load. RTScan enhances the scan performance on RT
cores by five orders of magnitude and outperforms state-of-the-art
implementations on CPUs and CUDA cores.

REFERENCES
[1] Muhammad A Awad, Serban D Porumbescu, and John D Owens. 2022. A GPU

Multiversion B-Tree. In Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques. 481–493.

[2] Carsten Binnig, Stefan Hildenbrand, and Franz Färber. 2009. Dictionary-based
order-preserving string compression for main memory column stores. In Pro-
ceedings of the 2009 ACM SIGMOD International Conference on Management of
data. 283–296.

[3] I Evangelou, G Papaioannou, K Vardis, and AA Vasilakis. 2021. Fast radius search
exploiting ray-tracing frameworks. Journal of Computer Graphics Techniques Vol
10, 1 (2021).

[4] Ziqiang Feng, Eric Lo, Ben Kao, and Wenjian Xu. 2015. Byteslice: Pushing the
envelop of main memory data processing with a new storage layout. In SIGMOD.
ACM, 31–46.

[5] Vijay K Garg. 2002. Elements of distributed computing. John Wiley & Sons,
150–151.

[6] Georgios Giannikis, Darko Makreshanski, Gustavo Alonso, and Donald Koss-
mann. 2014. Shared workload optimization. Proceedings of the VLDB Endowment
7, 6 (2014), 429–440.

[7] Joseph M. Hellerstein and Michael Stonebraker. 1993. Predicate migration:
optimizing queries with expensive predicates. In Proceedings of the 1993 ACM
SIGMOD international conference on Management of data - SIGMOD ’93.

[8] Justus Henneberg and Felix Schuhknecht. 2023. RTIndeX: Exploiting
Hardware-Accelerated GPU Raytracing for Database Indexing. arXiv preprint
arXiv:2303.01139 (2023).

[9] Brian Hentschel, Michael S Kester, and Stratos Idreos. 2018. Column sketches: A
scan accelerator for rapid and robust predicate evaluation. In Proceedings of the
2018 International Conference on Management of Data. 857–872.

[10] Ryan Johnson, Vijayshankar Raman, Richard Sidle, and Garret Swart. 2008. Row-
Wise Parallel Predicate Evaluation. Proc. VLDB Endow. 1, 1 (aug 2008), 622–634.

[11] Daniel Jünger, Robin Kobus, André Müller, Christian Hundt, Kai Xu, Weiguo Liu,
and Bertil Schmidt. 2020. Warpcore: A library for fast hash tables on gpus. In
2020 IEEE 27th international conference on high performance computing, data, and
analytics (HiPC). IEEE, 11–20.

[12] Fisnik Kastrati and Guido Moerkotte. 2016. Optimization of conjunctive predi-
cates for main memory column stores. Proceedings of the VLDB Endowment 9, 12
(2016), 1125–1136.

[13] Linwei Li, Kai Zhang, Jiading Guo, Wen He, Zhenying He, Yinan Jing, Weili Han,
and X Sean Wang. 2020. Bindex: A two-layered index for fast and robust scans.
In Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 909–923.

[14] Yinan Li and Jignesh M. Patel. 2013. BitWeaving: Fast Scans for Main Memory
Data Processing. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data (New York, New York, USA) (SIGMOD ’13). Association
for Computing Machinery, New York, NY, USA, 289–300.

[15] Enzo Meneses, Cristóbal A. Navarro, Héctor Ferrada, and Felipe A. Quezada.
2023. Accelerating Range Minimum Queries with Ray Tracing Cores.
arXiv:2306.03282 [cs.DC]

[16] Guido Moerkotte. 1998. Small Materialized Aggregates: A Light Weight Index
Structure for Data Warehousing. In Proc. VLDB Endow. 476–487.

[17] Vani Nagarajan and Milind Kulkarni. 2023. RT-DBSCAN: Accelerating DBSCAN
using Ray Tracing Hardware. arXiv:2303.09655 [cs.DC]

[18] Vani Nagarajan, Durga Mandarapu, and Milind Kulkarni. 2023. RT-KNNS Un-
bound: Using RT Cores to Accelerate Unrestricted Neighbor Search. In Proceed-
ings of the 37th International Conference on Supercomputing (Orlando, FL, USA)
(ICS ’23). Association for Computing Machinery, New York, NY, USA, 289–300.

[19] Thomas Neumann, Sven Helmer, and Guido Moerkotte. 2005. On the optimal or-
dering of maps and selections under factorization. In 21st International Conference
on Data Engineering (ICDE’05). IEEE, 490–501.

[20] NVIDIA. 2018. NVIDIA Turing GPU architecture. (2018), 25–29,
30–32. https://images.nvidia.cn/aem-dam/en-zz/Solutions/design-
visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-
Whitepaper.pdf

[21] Iraklis Psaroudakis, Manos Athanassoulis, and Anastasia Ailamaki. 2013. Sharing
Data and Work across Concurrent Analytical Queries. Proc. VLDB Endow. 6, 9
(2013), 637–648.

[22] Lin Qiao, Vijayshankar Raman, Frederick Reiss, Peter J Haas, and GuyM Lohman.
2008. Main-memory scan sharing for multi-core CPUs. Proceedings of the VLDB
Endowment 1, 1 (2008), 610–621.

[23] Kenneth A Ross. 2002. Conjunctive selection conditions in main memory. In
Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems. 109–120.

[24] P Griffiths Selinger, Morton M Astrahan, Donald D Chamberlin, Raymond A
Lorie, and Thomas G Price. 1979. Access path selection in a relational database
management system. In Proceedings of the 1979 ACM SIGMOD international
conference on Management of data. 23–34.

[25] Peter Shirley, IngoWald, Tomas Akenine-Möller, and Eric Haines. 2019. What is a
Ray? Apress, Berkeley, CA, 15–19. https://doi.org/10.1007/978-1-4842-4427-2_2

[26] Juliusz Sompolski, Marcin Zukowski, and Peter Boncz. 2011. Vectorization
vs. compilation in query execution. In Proceedings of the Seventh International
Workshop on Data Management on New Hardware. 33–40.

[27] Mike Stonebraker, Daniel J Abadi, AdamBatkin, Xuedong Chen,Mitch Cherniack,
Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil, et al.
2018. C-store: a column-orientedDBMS. InMakingDatabasesWork: the Pragmatic
Wisdom of Michael Stonebraker. 491–518.

[28] Liwen Sun, Michael J Franklin, Sanjay Krishnan, and Reynold S Xin. 2014. Fine-
grained partitioning for aggressive data skipping. In Proceedings of the 2014 ACM
SIGMOD international conference on Management of data. 1115–1126.

[29] Liwen Sun, Michael J Franklin, Jiannan Wang, and Eugene Wu. 2016. Skipping-
oriented partitioning for columnar layouts. Proceedings of the VLDB Endowment
10, 4 (2016), 421–432.

[30] Jianguo Wang, Chunbin Lin, Yannis Papakonstantinou, and Steven Swanson.
2017. An experimental study of bitmap compression vs. inverted list compression.
In Proceedings of the 2017 ACM International Conference on Management of Data.
993–1008.

[31] Zeke Wang, Xue Liu, Kai Zhang, Haihang Zhou, and Bingsheng He. 2019. Un-
derstanding and Optimizing Conjunctive Predicates Under Memory-Efficient
Storage Layouts. IEEE Transactions on Knowledge and Data Engineering 33, 6
(2019), 2803–2817.

[32] Yuhao Zhu. 2022. RTNN: Accelerating Neighbor Search Using Hardware Ray
Tracing. In Proceedings of the 27th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (Seoul, Republic of Korea) (PPoPP ’22). Associa-
tion for Computing Machinery, New York, NY, USA, 76–89.

[33] Marcin Zukowski, Mark Van de Wiel, and Peter Boncz. 2012. Vectorwise: A
vectorized analytical DBMS. In 2012 IEEE 28th International Conference on Data
Engineering. IEEE, 1349–1350.

https://arxiv.org/abs/2306.03282
https://arxiv.org/abs/2303.09655
https://images.nvidia.cn/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.cn/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.cn/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://doi.org/10.1007/978-1-4842-4427-2_2

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background of Ray Tracing
	2.2 Utilizing RT Cores for Scan
	2.3 RTc1: An Attempt to Improve the Scan Performance

	3 RT for scan with conjunctive predicates and the challenges
	3.1 Opportunities of RT Cores for Conjunctive Predicates and Our Second Attempt: RTc3
	3.2 Evaluation and Analysis of Conjunctive Predicates on RT Cores

	4 RTScan Design and Implementation
	4.1 Overview
	4.2 Uniform Encoding
	4.3 Data Sieving
	4.4 Matrix RT Refine

	5 Experimental Analysis
	5.1 Experiment Setup
	5.2 Performance Improvement of RTScan
	5.3 Performance Comparison with CPU and CUDA Cores
	5.4 Data and Query Transformation Overhead
	5.5 Performance Improvement for TPC-H
	5.6 Performance of Other Number of Predicates
	5.7 Performance Impact of Encoding
	5.8 Evaluation of Positive and Negative Selection
	5.9 Reduced Data for Scanning by Different Numbers of Vectors
	5.10 Performance Impact of Ray Interval and Ray Spacing

	6 Related Work
	7 Discussion
	8 Conclusion
	References

