
UltraPrecise: A GPU-Based Framework for
Arbitrary-Precision Arithmetic in Database Systems

Xin Li
Shandong University

Qingdao, China

li.xin@mail.sdu.edu.cn

Mengbai Xiao*
Shandong University

Qingdao, China

xiaomb@sdu.edu.cn

Dongxiao Yu
Shandong University

Qingdao, China

dxyu@sdu.edu.cn

Rubao Lee
Freelance

Columbus, OH, USA

lee.rubao@ieee.org

Xiaodong Zhang
The Ohio State University

Columbus, OH, USA

zhang@cse.ohio-state.edu

Abstract—Fixed-point decimal operations in databases with
arbitrary-precision arithmetic refer to the ability to store and
operate decimal fraction numbers with an arbitrary length
of digits. This type of operation has become a requirement
for many applications, including scientific databases, financial
data processing, geometric data processing, and cryptography.
However, the state-of-the-art fixed-point decimal technology ei-
ther provides high performance for low-precision operations or
supports arbitrary-precision arithmetic operations at low perfor-
mance. In this paper, we present a design and implementation
of a framework called UltraPrecise which supports arbitrary-
precision arithmetic for databases on GPU, aiming to gain
high performance for arbitrary-precision arithmetic operations.
We build our framework based on the just-in-time compilation
technique and optimize its performance via data representation
design, PTX acceleration, and expression scheduling. UltraPrecise
achieves comparable performance to other high-performance
databases for low-precision arithmetic operations. For high-
precision, we show that UltraPrecise consistently outperforms ex-
isting databases by two orders of magnitude, including workloads
of RSA encryption and trigonometric function approximation.

Index Terms—database, parallel computing, fixed-point arith-
metic, GPU

I. INTRODUCTION

Database systems have long been evolving towards a general

and powerful infrastructure for highly complex data analytics

tasks [1]–[5]. The widely adopted 32-/64-bit floating-point

format following IEEE 754-1985 [6] does not satisfy the re-

quirement of sufficiently accurate or even exact data analytics

applications in two ways [7]. First, many simple but critical

decimal fractions, such as 0.1, cannot be exactly represented,

unsatisfying the basic requirement of preserving the exactness

in banking, stock, and many other financing systems. Second,

the precision of a 32-/64-bit floating-point number is still

limited for many data analytics applications. To completely

address the two above-mentioned issues, a fixed-point data

type DECIMAL has been introduced to represent numbers

with decimal fractions. Several major database systems choose

to support this data type at arbitrary or nearly arbitrary-

precision [8]–[12], adapting themselves to a wide range of

applications besides financial systems, such as geographic

information systems, scientific computing, geometric compu-

tation, and cryptography. For example, evaluating orthogonal

*Mengbai Xiao is the corresponding author.

Fig. 1. Execute SELECT SUM(c1+c2) FROM R in PostgreSQL, Cock-
roachDB, and UltraPrecise. R has 10 million tuples. c1 and c2 are set to (1)
both DOUBLE, (2) DECIMAL(17, 5) and DECIMAL(14, 2), namely low-p, and
(3) DECIMAL(35, 5) and DECIMAL(32, 2), namely high-p.

polynomials in statistical analysis requires precision in calcu-

lation 4∼5× higher than the standard double-type [13], [14].

In gradient-domain processing, a prodigiously high precision

of up to 20,000 digits is necessary for solving a Poisson equa-

tion [15], [16]. The arbitrary-precision decimal arithmetic also

helps to address challenges in macroeconomic analysis [17].

However, the accuracy of decimal fractions in data analytics

gained by fixed-point DECIMAL processing is at a cost of high

data- and computing-intensive operations.

In databases, DECIMAL is associated with p, the precision,

and s, the scale. They are defined by the digital length of

the whole decimal number and the part after the decimal

point, respectively. The representation scope of DECIMAL(p,

s) is determined by the underlying word length. A 32-bit

word stores a decimal number at the highest precision of 9,

and a 64-bit word only raises that to 19. Thus, DECIMAL
must be extended to a multi-word representation for a higher

precision. However, the arithmetic operations of a multi-word

representation have to be implemented by software other than

by hardware, incurring non-trivial overhead because code that

properly handles carries, overflows, etc., should be added. In

PostgreSQL, more than 10K lines of C code are added to

realize the arbitrary-precision arithmetic of DECIMAL [18].

To quantitatively understand the performance and precision

issues of multi-word arithmetic operations, we execute a SQL

query using both the DECIMAL and DOUBLE data types

on PostgreSQL and CockroachDB, both of which declare to

support unlimited precision DECIMAL operations. The results,

shown in Figure 1, demonstrate that the execution of data type

3837

2024 IEEE 40th International Conference on Data Engineering (ICDE)

2375-026X/24/$31.00 ©2024 IEEE
DOI 10.1109/ICDE60146.2024.00294

20
24

 IE
EE

 4
0t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 D
at

a 
En

gi
ne

er
in

g 
(IC

DE
) |

 9
79

-8
-3

50
3-

17
15

-2
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IC

DE
60

14
6.

20
24

.0
02

94

Authorized licensed use limited to: The Ohio State University. Downloaded on August 02,2024 at 02:59:34 UTC from IEEE Xplore.  Restrictions apply. 



DOUBLE is very fast but produces incorrect results. Further-

more, we found that the DOUBLE execution results from the

two databases are inconsistent. Using the DECIMAL data type,

the results are correct and consistent, but the execution time

is 3.00× (PostgreSQL) and 1.45× (CockroachDB) slower.

Increasing the precision further prolongs the execution time.

The performance of extending fixed-point decimals to high

precision is poor. Although PostgreSQL completes the job in

Figure 1, its long execution time is unacceptable for many ap-

plications. To address the trade-off between high-performance

fixed-point operations with low precision and low-performance

fixed-point operations with arbitrary-precision, we have ex-

plored the opportunity of amortizing the computation cost via

massive parallelism. In database systems, the same expression

is evaluated for every tuple without dependency on each

other. This indicates the arithmetic operations of DECIMAL are

highly regular and friendly to the parallel architecture. Even

for aggregations, a unique opportunity of parallel processing is

still available for the acceleration of the fixed-point operations

involved. In this paper, we design and implement a powerful

framework called UltraPrecise for fixed-point decimals based

on arbitrary-precision arithmetic in GPU databases. Figure 1

shows that in UltraPrecise, executing a query with DECIMAL
at low-precision is only 1.04× slower than that with DOUBLE.

The arithmetic operations of DECIMAL appear in both

tuple-based expression evaluation and column-based aggrega-

tion. For evaluating an expression having DECIMAL, a just-

in-time (JIT) compilation engine is installed to generate GPU

kernels. Without JIT techniques, the evaluation code is either

inefficient or too cumbersome. Our framework accelerates

fixed-point arithmetic by optimizing the data representation,

arithmetic operators, and expression scheduling. We design

both compact and non-compact decimal representation that

efficiently stores data in memory and expands only in compu-

tation. We also exploit PTX instructions to optimize the code

processing carries and to speed up time-consuming divisions.

Optimization techniques are also developed at the expression

level. The costly alignment operations in additions and sub-

tractions are reduced by rewriting the expression. Additionally,

evaluating the portion of an expression with only constants and

converting the constants to the DECIMAL type are migrated

to the compilation stage, eliminating redundant computation

at runtime. We also implement the multi-threading expression

evaluation and aggregation, which amortizes the resources of

each calculation instance among threads. We implement Ultra-

Precise in RateupDB, a high-performance GPU database [19],

and carry out extensive experiments to justify our designs.

When running TPC-H Q1, UltraPrecise achieves comparable

performance as that of high-performance databases functional

only in this precision range, like HEAVY.AI, RateupDB, and

MonetDB. As the precision increases, UltraPrecise outper-

forms PostgreSQL by up to 41.28×. In more computation-

intensive workloads such as Rivest-Shamir-Adleman (RSA)

encryption and trigonometric function approximation, similar

performance trends are observed, where UltraPrecise out-

performs PostgreSQL, H2, and CockroachDB, all featuring

arbitrary-precision arithmetic of DECIMAL, by two orders of

magnitude. Our contributions are summarized as follows:

• We present a GPU computation framework that supports

arbitrary-precision arithmetic operations. To the best of

our knowledge, UltraPrecise is the only GPU database

realizing DECIMAL at arbitrary-precision.

• We design optimization methods from data representation

to expression scheduling that accelerates DECIMAL arith-

metic at arbitrary-precision, which have not been consid-

ered to enhance the arithmetic precision and performance

in existing database systems.

• We implement and evaluate UltraPrecise in a real-world

database with extensive experiments. The results justify

the generality of our design, and UltraPrecise is the

fastest among databases supporting arbitrary-precision

arithmetic.

We present a preliminary introduction in Section II. Sec-

tion III shows the design of UltraPrecise and Section IV

extensively evaluates our framework. Section V discusses

related work and Section VI concludes our work.

II. PRELIMINARY

A. Number Representations

Binary format vs. decimal format. A number n is defined

as

n = ±i× bs, (1)

where i is a positive integer, b is the base, and s is the scale.

Numbers in computer systems are commonly represented in

the binary format or the decimal format, i.e., set b to 2 or

10. A bit string represents the same number if s is 0, e.g.,

112 is 3 for both formats. But if s is set to -1, 112 means

1.5 in the binary format and 1.1 in the decimal format. If

we want to represent digits at the left side of the radix point,

two formats make no difference because they are integers that

can be represented by the same i with s = 0. For the digits

on the other side, the binary format fails to represent certain

numbers like 0.1 that could be exactly represented in the

decimal format, while the decimal format could represent all

numbers in the binary format. The decimal format still cannot

exactly represent some numbers like 1/3, but it is practical

enough since it is compatible with the numeric system in

human reality.

Fixed-point vs. floating-point. If the scale s in Equation 1 is

stored with the number and can be varied, the representation

is called floating-point. A representation is fixed-point if s
is determined at the compilation time. In database systems,

DECIMAL is a fixed-point representation so that only integers

are stored as the data, and the scale is the column property.

The fixed-point arithmetic between the operands with the same

scale is essentially integer arithmetic. With different scales,

the arithmetic operations become complicated and details are

discussed in Section II-B.

Arbitrary-precision vs. limited-precision. The modern arith-

metic logic units (ALUs) can only support arithmetic oper-

ations at limited-precision, which is commonly 32-/64-/128-

3838

Authorized licensed use limited to: The Ohio State University. Downloaded on August 02,2024 at 02:59:34 UTC from IEEE Xplore.  Restrictions apply. 



bit length. The arbitrary-precision arithmetic is realized by

software and the practical limit should only be imposed by

the available memory. For general-purpose computation, we

expect not to put an upper bound on the precision p of

DECIMAL (p, s) though, in practice, a couple of databases

only support small p values for high performance.

B. Fixed-point Arithmetic Operations

In this work, we are more interested in designing an efficient

framework for fixed-point arithmetic other than delving into

specific arithmetic algorithms. In this section, we briefly intro-

duce the basic arithmetic operations of fixed-point numbers.

Additions/subtractions. The scales of two fixed-point

operands must be aligned before the addition or subtraction.

For example, 1.23 in DECIMAL(4, 2) is represented as an

integer 123 in the memory while 0.1 in DECIMAL(3, 1) is

stored as an integer 1. Directly adding them leads to a wrong

result so we need to convert 0.1 with a scale of 1 to 0.10

with a scale of 2, which is represented by an integer of

10. In the decimal format, aligning a scale of s1 to s2 is

realized by ×10s2−s1 . If s1 > s2, the alignment operation is

realized as ÷10s1−s2 . The division operation not only incurs

higher computation overhead but also lowers the intermediate

precision. Thus, aligning a smaller scale with a larger one

is always preferred. Moreover, positives and negatives both

exist in the database. In a function implementing the addition,

the signs of operands determine whether two numbers are

added or one number is subtracted from the other. Numbers

are compared before the subtraction to decide the minuend

and the subtrahend. For addition and subtraction, numbers

are calculated from the least significant word to the most

significant word, where carries should be properly handled.

For the comparison, numbers are compared from the most

significant word to the least significant one. The result is

derived once two words differ.

Multiplications. Multiplying two DECIMAL numbers is es-

sentially multiplying two multi-word integers, and the basic al-

gorithm is the elementary school algorithm. For two operands

that each have N words, their product is 2N words. The k-th

word of the product is derived by multiplying the words from

two operands: if the i-th word from the first operand and the

j-th word from the second satisfies i + j = k, their product

is added to the k-th word of the result, and all such pairs are

calculated. The carry-out of the accumulation is added to the

(k+1)-th word of the result. The Karatsuba algorithm [20] is

an advanced multiplication algorithm with a lower complexity

of O(N log2 3) than that of the elementary school algorithm,

which is O(N2). But in practice, the Karatsuba algorithm is

not as fast as the basic one for a small N . The Schönhage-
Strassen algorithm [21] has even lower complexity than the

Karatsuba algorithm, but it outperforms the latter only if N is

sufficiently large.

Divisions. The division operation of DECIMAL numbers is

converted to a sequence of multiplications and additions for

high performance. The basic division algorithm is similar

to the long division method taught in elementary school.

select 
R.c1 + R.c2

from R;

select 
sum(R.c2)

from R
group by

R.c1;

R

c1 c2

c1+c2… … …

DECIMAL type

R

c1 c2
… …

sum(c2)

DECIMAL type

(a) (b)

Fig. 2. The fixed-point arithmetics in the query execution. (a) Adding
DECIMALs in tuples. (b) Aggregating DECIMALs in columns.

The algorithmic steps are as follows: 1) Derive the quotient

range. If the digit length of the divisor is l, the quotient

range is then (D/10l, D/10l−1], where D is the dividend.

2) Find the exact quotient. The quotient is the number that

times the divisor equals the dividend and could be located

with a binary search. An advanced algorithm is the Newton-
Raphson algorithm [22], where the quotient is calculated by

D×d−1, where d is the divisor. d−1 could be approximated by

iterations of multiplication, where d−1
i+1 = d−1

i (2−d·d−1
i ). The

Goldschmidt algorithm [23] calculates the quotient according

to D
d · F1

F1
· F2

F2
· · ·. Once the divisor approximates 1, the dividend

approximates the quotient.

III. FRAMEWORK DESIGN

A. Overview

The fixed-point arithmetic happens in two places when

executing a SQL query: evaluating an expression and aggre-

gation. This indicates that the computation occurs in tuples or

columns. Two illustrative cases are presented in Figure 2.

We implement UltraPrecise in RateupDB [19], a high-

performance GPU database system. Figure 3 shows how the

expression evaluation is embedded in the database query

execution pipeline. A SQL query with expressions having

DECIMAL is parsed into a logical plan tree, where the

expressions are associated with relational operators and are

parsed into expression trees. The logical plan tree is turned

into a physical plan tree when the expression trees are also

optimized. The optimized expression trees are evaluated in a

just-in-time (JIT) compilation engine, where GPU kernels are

generated and compiled. In the end, the executor executes the

query plan tree in a bottom-up manner, during which the GPU

kernels are launched for evaluating the expressions.

The DECIMAL values are aggregated in rounds for exploit-

ing massive parallelism on GPU. The arithmetic operations

are realized in functions instead of instructions. For the tuples

grouped according to DECIMAL columns before aggregation,

we implement the comparison operators of DECIMAL that help

sort the numbers to achieve grouping.

Simply parallelizing the expression evaluation and aggrega-

tion is still slow. To significantly improve the performance of

our framework, we have made efforts to effectively optimize

data representation, fine-tuned operator implementations, and a

3839

Authorized licensed use limited to: The Ohio State University. Downloaded on August 02,2024 at 02:59:34 UTC from IEEE Xplore.  Restrictions apply. 



A SQL query
A logical 
plan tree

A physical 
plan tree

Code Generator

Executor Results
Expressions Expression trees Optimized 

expression trees

GPU kernels

call
return 
evaluation 
results

Fig. 3. Evaluating expressions with DECIMAL in a database system

few techniques manipulating expressions. To further accelerate

the computation, we have also applied multi-threading for an

instance of expression and aggregation.

B. JIT-based Representation

If the code of DECIMAL representations and arithmetic

operations is pre-implemented, there are three options: 1) A

large enough space is always defined for a decimal so that any

length of numbers could be contained, which is not practical;

2) We allocate memory at runtime according to the input data,

but the memory management cost could easily surpass the

time of calculation in simple expressions; 3) We compile the

database with DECIMAL representation templates. However,

this quickly inflates the code size because it has to instantiate

not only the representations with all possible data lengths but

also arithmetic operators having arbitrary length combinations.

To make our arithmetic framework general and efficient, the

DECIMAL representations are generated by the JIT engine. A

number in DECIMAL(p, s) is represented as an integer stored

in an array of 32-bit words, and its sign is held in a byte.

For example, 1.23 is stored as 123. The precision and scale

are contained in the metadata of the relation because values

in a data column have the same DECIMAL definition. We

can directly use them as constants when generating the GPU

kernel that carries out the fixed-point arithmetic operations.

The length of the value array Lw is also determined in code

generation, which follows

Lw =

⌈
p · log2 10

32

⌉
.

The Lw values of varying p are pre-computed and stored

in a key-value table. The top of Figure 4 illustrates our

representation and gives an example of representing -1.23 in

DECIMAL(10, 2), which takes 9 bytes in total.

The value array is word-aligned because this is efficient

in the calculation. For example, the PTX instruction addc
that adds two numbers with the carry-in operates on 32-bit

operands at least. However, storing DECIMAL in a word-

aligned manner consumes extra space in the memory and disk.

So the fixed-point decimals are stored in more compact byte-

aligned arrays before being read to the processors. We keep the

sign in the byte array using 1 bit, and thus the array length is

Lb bytes calculated by
⌈
1+p log2 10

8

⌉
. In this way, less space is

allocated in memory for the decimals, and it also speeds up the

calculation if the workload is dominated by memory accesses.

The bottom of Figure 4 is the representation in memory and

gives an example as well, which stores -1.23 in 5 bytes.

values[ ] …

sign

8-bit

32-bit

values[ ] …

8-bit sign

Least significant Most significant

-1.23 in DECIMAL(10, 2)

sign 1

values[2] 123 0

values[5] 123 …0 0x80

in registers
in memory

Fig. 4. Fixed-point representations vary in registers and memory. The left
side shows the general representations and the right side shows how -1.23 in
DECIMAL(10, 2) is stored.

1) An alternative representation: A fixed-point number

could also be represented in an array where the decimal point

only appears between the array elements, which is the design

adopted by PostgreSQL [18] and RateupDB [19]. For example,

if we want to represent 1.23 in a word-aligned array, two words

must be allocated. One word stores 1, and the other word

represents 0.23 (it stores 230,000,000 in the 32-bit word). To

realize this representation, a 32-bit word to the right of the

decimal point is only allowed to represent 109 numbers.

The advantage of this design is that it cancels the alignment

operation between two DECIMAL numbers with different

scales in additions and subtractions. We show an example of

the alternative representation in Figure 5. Though this repre-

sentation saves computation, it also introduces extra storage

costs. Especially when the precision is low, double space is

required. We eventually discard this design because we notice

that compared to the align operations, reading data from the

memory dominates the execution time of additions and sub-

tractions. A compact representation benefits the calculation.

2) A Code Example: The expression evaluation follows

three steps: 1) Read the compact decimals, and expand them to

non-compact ones; 2) Evaluate the expression; And, 3) write

the results back to the memory in the compact format. We

present an example in Listing 1. The generated code evaluates

an expression of DECIMAL(4, 2) + DECIMAL(4, 1).

__global__ void calc_expr_1(ColIter *input,
int tupleNum, char *output) {

int stride = blockDim.x * gridDim.x;
int tid = blockIdx.x * blockDim.x + threadIdx.x;
for(int i = tid; i < tupleNum; i += stride) {

Decimal<1> c1_4_2((cDecimal*)(input[0][i]), 2);
Decimal<1> c2_4_1((cDecimal*)(input[1][i]), 2);
Decimal<1> result = (c1_4_2 + c2_4_1 << 1);
result.toCompact(output + i * (size_t)3, 3);

}
}

Listing 1. A code example is generated for evaluating DECIMAL(4, 2) +
DECIMAL(4, 1). input is the iterator array of accessing columns, where
input[0] points to the DECIMAL(4, 2) column and input[1] points to
the other. cDecimal is the compact representation of decimals which is a
byte array. Decimal<N> is word-aligned and N is Lw . toCompact converts
a decimal to a compact representation.

3840

Authorized licensed use limited to: The Ohio State University. Downloaded on August 02,2024 at 02:59:34 UTC from IEEE Xplore.  Restrictions apply. 



DECIMAL(4, 2) + DECIMAL(4, 1)
1.23 + 1.1

123

11

1
1 1

23
+ +

2 33

× 10
110

233

Fig. 5. Different representations change the realization of fixed-point arith-
metic operations. Putting the decimal point between array elements introduces
additional storage cost but cancels alignment in additions and subtractions.

When generating the GPU kernel, we calculate the lengths

of the word array and the byte array. As the precision is

4, Lw is thus 1, and Lb is 2. We use C++ templates to

help generate code for decimals with varying precisions. In

the code templates, + and <<n are overloaded to implement

adding two DECIMAL numbers and multiplying one value

by 10n, respectively. In this example, two numbers have

different scales, so an alignment operation is required. To

avoid potential overflows in the computation, we expand the

precision of the results to 6, which leads to Lw of still 1 and

Lb of 3.

3) Intermediate Precision: Using the JIT engine to evaluate

expressions has the advantage of determining the precision of

intermediate results and designating their size at compile time.

This eliminates the need to set the size of the data container

to a large enough value or allocate them at runtime to avoid

overflow. We can infer the precision of all intermediate nodes

in a bottom-up manner from an expression tree parsed. Dif-

ferent binary operators have different rules for the precisions

and scales of two operands. For addition or subtraction, the

result is defined as DECIMAL(max(p1, p2 + s1 − s2) + 1, s1)

if s1 ≥ s2. For multiplication, the result is (p1 + p2, s1 + s2).

For division, if the dividend is (p1, s1) and the divisor is

(p2, s2), the result is guaranteed to have the scale of s1 + 4
in our framework. To achieve this, we multiply the dividend

by 10s2+4 before the division. We also need to determine the

precision of the quotient. Since the integer part of the quotient

has a maximum length of (p1−s1)−(p2−s2)+1, we can safely

define the quotient as DECIMAL(p1−p2+s2+5, s1+4) without

causing the overflow. For the modulo operator, the precision

of the result is equal to p2, and the scale is 0 because only

the integer modulo is supported.

We also need to determine the precision of the results for the

aggregation operators. For MAX and MIN, the precision of the

result is equal to the precision of the expression being aggre-

gated. For SUM, we define the result precision as p+�log10 N�,
where N is the number of tuples. For AVG, we determine the

result precision by following the rules of SUM and division,

where the divisor is converted to DECIMAL(�log10 N�+1, 0).

C. Optimizations in Operators

Parallel thread execution (PTX) instructions of NVIDIA

GPUs are assembly-like, and they could be embedded in

the kernel code to gain performance comparable to native

devices. We proficiently utilize these instructions to accelerate

the arithmetic operations of DECIMAL in our framework.

1) Carry-in and carry-out: We have to handle carry-in and

carry-out when performing multi-word arithmetic operations.

Additions and subtractions have the instructions addc and

subc. Listing 2 shows an example of using addc to add

two decimals. madc is also tested for multiplications, but it

is slower than the code implemented by CUDA only.

asm volatile ("add.cc.u32 %0, %1, %2;" :
"=r"(v[0]) : "r"(other.v[0]), "r"(v[0]));

#pragma unroll
for(int i = 1; i < N; i++)

asm volatile ("addc.cc.u32 %0, %1, %2;" :
"=r"(v[i]) : "r"(other.v[i]), "r"(v[i]));

Listing 2. The code appears in the function overloading operator “+”. The
instruction add.cc.u32 adds two operands in unsigned 32-bit type and
sets a single flag bit if the result has carry-out. addc.cc.u32 additionally
adds the carry-in set in the previous instruction. v[N] is the array storing
DECIMAL values.

2) Divisions: The division is the most computationally

intensive arithmetic operator. To calculate a ÷ b, we follow

a straightforward algorithm: 1) Understand the quotient range

by comparing the dividend and the divisor, which is derived

from the most significant position of 1 in a and b. For example,

if a is 1xxxxx2 and b is 1xxx2, the quotient must be in the

range from 102 to 1112. Locating the most significant 1 of

operands is accelerated by a PTX instruction bfind; 2) Use

the binary search to test numbers in the quotient range until a

number multiplies the divisor to equal the dividend.

We test two cases to circumvent the costly division algo-

rithm. First, if the dividend and divisor could be contained

in a 64-bit word, respectively, the instruction div is used to

accomplish the division directly. The test is after the precision

expansion of the dividend. Second, if the divisor is only a

32-bit word, we divide the dividend from the most significant

word to the least with the div instruction.

D. Optimizations in Expressions

1) Alignment scheduling: As mentioned above, two

DECIMAL values with different scales must be aligned before

additions and subtractions. This requires more cycles than the

add or sub instructions because a multiplication operation

is introduced. In an extreme case, we have to align decimals

in every step of evaluating an expression. For example, in

DECIMAL(4, 1) + DECIMAL(4, 2) + DECIMAL(4, 1), the

first decimal must be aligned to the second one, resulting in a

sum with a scale of 2. Another alignment is required because

the scale of the third decimal is 1.

Before evaluation, we could reduce the alignment operations

by rewriting the expression. If we add two DECIMAL(4,

1) numbers first in the previous example, only 1 alignment

is required in the evaluation. To achieve this, we rewrite

the expression with the following steps: 1) An arbitrary

expression is first parsed into a binary expression tree, where

the intermediate nodes are operators and the leaf nodes are

operands; 2) The subtractions are changed to additions, where

3841

Authorized licensed use limited to: The Ohio State University. Downloaded on August 02,2024 at 02:59:34 UTC from IEEE Xplore.  Restrictions apply. 



−× ࢇ+ ࢈ ࢉ ࢊ (12,2)ࢋ

(12,5) (12,5)

(12,2)

(12,2)

(24,10) (12,2) − ࢇ+× ࢈ ࢊࢉ (12,2)ࢋ

(12,5) (12,5)

(12,2)

(12,2)

ࢊ
(12,2)

−++ ࢇ× ࢈ ࢉ
(12,5) (12,5)

(12,2)

ࢋ
(12,2)

collapse ࢋ−
(12,2)

ࢊ
(12,2)

+++ ࢇ× ࢈ ࢉ
(12,5) (12,5)

(12,2)

ࢋ
(12,2)

+−+ ࢇࢊ
(12,2)(12,2)

× ࢉ
(12,5)

࢈
(12,5)

Fig. 6. An expression of a + b × c + d − e is scheduled to minimize the alignments from 3 to 1. The precision and scale of operands are shown below
the leaf nodes. When sorting the operands of addition, the scale of an operator is determined by its type. “×” sums the scale of its operands and the unary
negation “−” inherits the scale.

the subtrahend is converted into a two-level subtree with the

unary negation operator as its root; 3) The binary expression

tree is converted into an n-ary tree by collapsing the addition

operators at neighboring levels; 4) The order of leaf nodes at

the same level is scheduled according to their scales; 5) The n-

ary tree is converted back to a binary tree for code generation.

Figure 6 shows an example of alignment scheduling.

2) Constants in expressions: Constants, integers, and

floating-point numbers involved in fixed-point arithmetic need

to be converted to DECIMAL first. In the expression evaluation,

the constant conversion has to repeat itself for each tuple. To

eliminate the computation redundancy, we migrate the con-

stant conversion to the compilation from runtime execution.

Furthermore, a portion of an expression with only constants

is evaluated before the code generation.

Specifically, we optimize the constant arithmetic after the

expression is transformed into an n-ary tree. Before the

alignment scheduling, we order the nodes at the same level

according to their types, where the constant nodes are put

together. Then, it is trivial to calculate the arithmetic results of

the constant nodes. Once the calculation is done, i.e., at most

one constant remains at each level, we iteratively search if

any calculation shortcuts are in the expression tree. A shortcut

is a subtree that could be evaluated immediately, e.g., +a,

0 + a, and 1 × a. After all, the remaining constants are

converted to DECIMAL based on their value. For example, 1.23

is DECIMAL(3, 2) and 10 is DECIMAL(2, 0). The DECIMAL
constants are scheduled with their scales. A constant is aligned

to the minimum of the nodes having a greater or equal scale.

We present an example in Figure 7.

E. Multi-threading Arithmetic

1) Expression evaluation: In tuple-based expression evalua-

tion, it is natural to assign one tuple to one thread. The registers

required and the memory access cost per thread increase as the

precision expands and the expression becomes more complex.

To manage the processor resources at a reasonable scale and

hide the memory access latency, the arithmetic operations

could also be accomplished in multi-threading.

We implement the multi-threading arithmetic operations

based on Cooperative Groups Big Numbers (CGBN) [24],

[25], a GPU library that realizes multiple precision arithmetic

of unsigned integers. We extend the CGBN library to support

our DECIMAL representations and signed operands. A group

of threads is arranged to evaluate an instance of expression,

where the group size is threads per instance (TPI).

The DECIMAL values are loaded into a thread group col-

laboratively. When generating the GPU kernel, we need to

determine how the operands in the compact representation are

read. Since processing carries between threads incurs inter-

thread communication, when the word length of a decimal

exceeds TPI, we direct a thread to read neighboring data

to minimize this overhead. For each thread in the group,

the words it reads are calculated as lt =
⌈

Lb

4·TPI

⌉
. Since the

compact representation is not word-aligned, a trailing thread

in the group reads data less than or equal to lt.

int g_tid = threadIdx.x & 3; // TPI− 1 = 3
int tid = (blockIdx.x * blockDim.x + threadIdx.x) / 4;
if(tid >= tupleNum) return;

uint32_t v[2]; // lt = 2
if(g_tid < 3) // Lb/(lt · 4) = 3
memcopy(v, input[0][tid] + g_tid * 8, 8);// lt · 4 = 8

// No following branch if Lb/(lt · 4) == TPI.
else if(g_tid == 3)
memcopy(v, input[0][tid] + g_tid * 8, 3);// Lb%(lt · 4) = 3

Listing 3. The code is generated to load a number in DECIMAL(64, 32) to a
group of threads. The number is stored in an array of 27 bytes, i.e., Lb = 27.
As TPI is set to 4, each thread except the last one loads lt = 2 words. The
branch code is not generated if the compact representation is aligned to TPI.

Listing 3 presents an example of loading a DECIMAL
value into a group of threads. Depending on the arithmetic

types, the loaded data are directly involved in computation

(additions/subtractions) or are broadcast to other threads in

the group (multiplications/divisions), piecing up the complete

results. After evaluation, the results are also collaboratively

written to memory by the thread group.

Additionally, we enhance the CGBN library to support

full-fledged DECIMAL operations. For additions, the signs

of operands are shared among group threads, and the actual

calculation is converted to subtraction according to the signs,

where the alignment and comparison operations are also

added. For multiplications and divisions, the processing of

signs, precisions, and scales are added to the implementations

as discussed in Section III-B3. To the end, we extend CGBN

to support the arithmetic of arbitrary-precision DECIMAL and

be compatible with UltraPrecise.

3842

Authorized licensed use limited to: The Ohio State University. Downloaded on August 02,2024 at 02:59:34 UTC from IEEE Xplore.  Restrictions apply. 



ࢇ×+ࢊ ࢈ ࢉ
(12,2)

(12,1)
.  + −

(12,3)

(12,2)

+ࢊ ࢇ× ࢈ ࢉ
(12,2)

(12,1)
.  + −

(12,3)

(12,2)

evaluate

evaluate

+ࢊ ࢇ× ࢈ ࢉ
(12,2)

(12,1) +
(12,3)

(12,2)

0+c → +c → c

. 
(3,2)

to decimal

+ࢊ ࢇ× ࢈ (12,1)ࢉ (12,3)

(12,2)

. 
(4,3)

(12,2)

align to ࢊ

Fig. 7. The constants in an expression of 1+a+ b× (5+ c− 5)+d+1.23 are optimized. The constant arithmetics are processed at each level individually.
The subtree representing 0 + c is found a shortcut and could be optimized to a single node c. After the alignment scheduling, 2.23 in DECIMAL(3, 2) is
scaled to DECIMAL(4, 3), which saves redundant computation in runtime.

2) Multi-threading Aggregation: We implement multi-

threading aggregation operators using moderngpu [26]. In

these operators, we replace the underlying comparison, ad-

dition, and division with multi-threading versions, and adjust

how the workload is arranged accordingly. The aggregation is

accomplished in several passes. For each pass, the DECIMAL
values are arranged into several thread blocks, with each

thread block calculating an aggregation result. The aggregation

results are collected together for the next pass until we can

process all the data in one thread block.

To fully exploit the computational capacity of streaming

multiprocessors (SMs), the decimals to be aggregated must

be properly arranged. Specifically, to aggregate n DECIMAL
values, each expanded to Lw words in the calculation, we

determine nT , the number of values processed in a thread

block, and nt, the number of values processed in a thread.

In a thread block, the DECIMAL values are first read into

the shared memory and then aggregated. The aggregation is

first carried out inner-thread and then inter-thread. Thus, nT

and nt are determined by Tmax, the maximum number of

threads that can be launched in a thread block, and S, the

size of shared memory. Since TPI threads are grouped to

calculate an arithmetic instance, the number of thread groups

in a thread block is Ng = Tmax/TPI. Due to the shared

memory limitation, we derive that nt =
⌊

S
Ng(4Lw+1)

⌋
. We

thus have nT = nt · Ng and need to launch �N/nT � thread

blocks.

IV. EVALUATION

Hardware configuration. All experiments are performed on a

server equipped with high-performance hardware. The server

has two CPUs of Intel Xeon Gold 6130H with a frequency of

2.10 GHz, featuring 16 cores and a 22MB Last-Level Cache.

The GPU is an NVIDIA Quadro RTX A6000, which has 48

GB GDDR6 memory and is connected through a PCIe 4.0 bus.

The machine is equipped with 128 GB DDR4 DRAM and has

mirrored 1TB SSDs. The server runs on Ubuntu 20.04 LTS

operating system and the experiments were conducted using

CUDA Toolkit 11.6.

Workloads. To comprehensively evaluate the system perfor-

mance, we vary the precision of decimals used in the experi-

ments. This changes the size of the array used to hold decimal

data in both compact and non-compact representations. If

not specified, we fix the precision of evaluation results of

expressions to 18/38/76/153/307, which means 2/4/8/16/32

words are used to store the results. So, the precisions of

DECIMAL columns in different experiments are determined by

the rules in Section III-B3. When reporting the performance,

LEN represents the word length. The scales are set to different

values in experiments. The relations used in the experiments

contain 10 million tuples unless otherwise specified, and the

data in DECIMAL columns are randomly generated.

Peer systems. We select a couple of representative databases

to compare with UltraPrecise. For CPU databases, Post-
greSQL v14.4 and MonetDB v11.46.0 are selected. Post-

greSQL supports arbitrary-precision arithmetic toward fixed-

point decimals. MonetDB is a high-performance in-memory

database but only supports DECIMAL at limited precision. For

GPU databases, we select HEAVY.AI v6.3.0 and an open-

source version of RateupDB for academic partners, both using

GPU to accelerate the query execution but do not support high-

precision DECIMAL. RateupDB supports the max precision

of 36 while HEAVY.AI only supports 18. We additionally

evaluate two synthesized workloads, i.e., RSA encryption and

sine functions, on CockroachDB v23.1.0 and H2 v2.1.214.

The two databases claim to support DECIMAL at arbitrary-

precision as PostgreSQL.

A. Decimal Representation

We first evaluate the representation design with Query 1,

where the relation R1 has three columns of decimals. The

only expression of the query is composed of three columns

in a DECIMAL type with the same precision and scale. Thus,

no alignment scheduling and constant optimization are intro-

duced. We generate 5 versions of R1 with increasing precision.

For all relations, the columns have the same scale of 2. We

disable the multi-threading arithmetic in the experiments.

SELECT c1+c2+c3 FROM R1;

Query 1

The results are reported in Figure 8, where the performance

numbers are shown in groups of bars. Each group represents

the varying result precision, from 2 to 32 words. The y-axis

is the execution time in seconds. The execution time includes

3843

Authorized licensed use limited to: The Ohio State University. Downloaded on August 02,2024 at 02:59:34 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 8. Performance of various databases when executing the Query 1

the disk I/Os except for MonetDB, which is designed as an

in-memory database. The execution time of GPU databases,

i.e., HEAVY.AI, RateupDB, and UltraPrecise, also includes

the PCIe transfer time. For HEAVY.AI, it executes the query

successfully only when the decimals can be contained in two

32-bit words, since it uses a 64-bit word to represent the

DECIMAL type, no matter how the precision and scale are

defined. MonetDB fails to execute the query as well when

LEN exceeds 4 because only two 64-bit words are used in

it. RateupDB has the same problem in that internally at most

5 32-bit words are used to represent the decimals. When the

precision is low, MonetDB is the fastest database because disk

I/Os are excluded. It uses 461 ms and 800 ms to execute the

query as LEN is 2 and 4, respectively. UltraPrecise is slower

than RateupDB when LEN is 2 because we introduce the JIT

engine to evaluate the decimal expression. UltraPrecise uses

714 ms and RateupDB uses 622 ms. When LEN increases to

4, UltraPrecise becomes faster than RateupDB, which is 902

ms versus 1055 ms. The reason is that the compilation time

in UltraPrecise is almost the same but the computation time

increases. As our representation design benefits the computa-

tion, our system becomes faster. Surprisingly, HEAVY.AI is

the slowest one among GPU databases, which takes 800 ms

even though its decimal arithmetic is evaluated as integers.

PostgreSQL accomplishes all query executions as ours but

with a quite slower speed. Due to the GPU acceleration and

the representation, we speed up the execution by up to 5.24×.

We further execute a more complicated query shown in

Query 2, where R2 is a relation of 8 columns. We still gen-

erate 5 versions of R2, where c1-c4 are constantly defined

as DECIMAL(6, 2) and c5-c8 are defined with increasing

precision. As a result, the first expression always outputs the

decimal result in one word and the second expression outputs

the result with increasing LEN. In our implementation, two

GPU kernels are generated in query execution.

SELECT c1+c2+c3+c4, c5+c6+c7+c8 FROM R2;

Query 2

The performance of executing Query 2 in various databases

is shown in Figure 9. As the expressions are more computation

intensive, UltraPrecise outperforms other databases and is the

fastest in all cases. When LEN is 2, UltraPrecise takes 969

ms while HEAVY.AI, RateupDB, and MonetDB take 1.09

s, 1.02 s, and 1.27 s to finish the execution. When LEN

Fig. 9. Performance of various databases when executing Query 2

is 4, UltraPrecise, RateupDB, and MonetDB spend 1.32 s,

1.55 s, and 1.69 s. HEAVY.AI and RateupDB are faster than

MonetDB because the GPU databases are more advantageous

in computation-intensive workloads. PostgreSQL is still the

slowest. Our scheme outperforms PostgreSQL by up to 8.02×.

We use NVIDIA Nsight Compute [27] to profile kernels of

evaluating a + b and a × b, where a and b are DECIMAL
columns. The profiling results show that for additions, the

SM utilization is 4.14% if LEN is 8 even though the warp

occupancy is 100% already. As LEN increases to 32, the

SM utilization decreases to 2.31% because more registers are

required by a thread and the warp occupancy becomes 50%.

As for multiplication, similar profiling results are observed.

When LEN increases from 8 to 32, the SM utilization decreases

from 3.70% to 3.23% while the warp occupancy reduces to

33% from 100% as well. The profiling results confirm that

simple arithmetic operations are memory-intensive workloads,

and our compact representation design accelerates the compu-

tation.

B. Optimizations in Expressions

1) Alignment scheduling: We evaluate the alignment

scheduling by generating GPU kernels from three expressions:

1) a+b+a, 2) a+b+a+a+a, and 3) a+b+a+a+a+a+a,

where both a and b are DECIMAL. b is DECIMAL(17, 11)

when LEN is 2 or DECIMAL(18, 11) otherwise. a has increas-

ing precisions and a constant scale of 1. With the alignment

scheduling, the operand b is moved to the end of the expres-

sions because of its large scale, and the alignment operations

are reduced to 1 from 2, 4, and 6 times, respectively. We

report the experimental results in Figure 10. We can observe

the trends from the experimental results that more time is saved

with the growing precision and the longer expression length.

When the expression is a+ b+ a+ a+ a+ a+ a and LEN is

32, the alignment scheduling improves the execution time by

34%. For a+ b+ a and LEN is 2, the saving is 16.5%.

2) Constant construction: One of the techniques for opti-

mizing the decimal expression is constant construction, i.e.,

instead of converting the constants to DECIMAL in runtime,

the conversion is moved to the compile time. In this experi-

ment, we generate GPU kernels to evaluate the expression of

1+a, where a is a DECIMAL with increasing precision and the

same scale of 10. When generating the code, the constant 1 is

converted to a DECIMAL with the precision 10 and the scale

10, which aligns with the scale of a. The experimental results

are shown in Figure 11. We can observe that with increasing

3844

Authorized licensed use limited to: The Ohio State University. Downloaded on August 02,2024 at 02:59:34 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 10. Performance of GPU kernels evaluating various expressions. From left to right, the expressions are a+b+a, a+b+a+a+a, and a+b+a+a+a+a+a.

Fig. 11. Performance of GPU kernels evaluating 1 + a

precision, we save more execution time of GPU kernels due

to the higher alignment overhead. When the size of the array

storing a increases from 2 to 32, it speeds up the execution

by 1.33×, 1.25×, 1.14×, 1.14×, and 1.11×.

3) Constant pre-calculation: We test the optimization tech-

nique of constant pre-calculation, which calculates the sub-

expression with constants only at the compile time. We gen-

erate the GPU kernels of 1 + a+ 2 + 11, 1 + a+ 2− 3, and

0.25×(a+b)×4, where a and b are DECIMAL with increasing

precision and the same scale of 10. Without the constant pre-

calculation, three GPU kernels are generated, and the first two

need to process 3 additions or subtractions. The last kernel

processes 2 multiplications and 1 addition. If the constant pre-

calculation is enabled, 1+a+2+11 is transformed to 14+a,

and in the GPU kernel, 14 is represented as DECIMAL(12,

10). We reduce 3 additions to 1 addition in the code. For

1+a+2−3, the expression is reduced to a, and no GPU kernel

is generated. For 0.25×(a+b)×4, we actually evaluate a+b.
The results are shown in Figure 12, where the execution time

is saved up to 62.55%, 100.00%, and 62.50%, respectively.

C. Multi-threading Arithmetic

1) Expression evaluation: We also conduct experiments to

measure the kernel execution time if an expression is evaluated

in the multi-threading manner, i.e., the arithmetic operations

are calculated by a group of threads. We generate kernels for 3

expressions (since the addition and the subtraction are almost

the same): 1) a+ b, 2) a× b, and 3) a÷ b, where a and b are

DECIMAL types. In the experiments, we set TPI to 1, 4, 8,

16, and 32. When LEN exceeds TPI, every thread in the group

processes LEN/TPI words of data. The kernels are executed 3

times and we report the average results in Figure 13.

Additions and multiplications have a similar performance

trend. When the precision is low, the performance of single-

threading arithmetic operations is similar to the multi-

threading ones. For LEN is 4, the single-threading and the

4-threading kernels both take 3.67 ms to add two decimals.

However, the multi-threading implementations are more effi-

cient as the operand precision grows. When LEN is 32, the

single-threading kernel takes 49.67 ms and 45.00 ms in the

additions and the multiplications, respectively. In contrast to

this, the multi-threading implementations take as fast as 23.67

ms (8-threading) for additions and 23.33 ms (8-threading) for

multiplications. The multi-threading implementations are more

efficient because the memory accesses to a value array are

coalesced in a thread group. For the divisions, different algo-

rithms are used in the single-threading kernel and the multi-

threading kernel. In the single-treading kernel, the result is

calculated using binary search in a range of potential quotients.

In the multi-treading kernel, we follow the implementation

in CGBN [24], [25], which is based on the Newton-Raphson

algorithm. However, the implementation has a restriction that

LEN/TPI must be less than or equal to TPI, so no data is

presented when executing the 4-threading kernel and LEN is

32.

SELECT SUM(c1) FROM R3;

Query 3

2) Multi-threading aggregation: We also implement the

aggregation operations of DECIMAL in multi-threading. We

measure the execution time of Query 3 in various database

systems, where R3 has only one column of decimals. We vary

the precision and scale of c1 in (11, 7), (29, 11), (65, 31),

(137, 51), and (281, 101) so that the final aggregation results

are stored in the 32-bit word-aligned array with the sizes of

2, 4, 8, 16, and 32. The TPI is 8, and the other databases also

execute the aggregation operation in parallel.

The experimental results are shown in Figure 14(a). As in

the expression evaluation, HEAVY.AI supports the aggregation

only if LEN is 2, while MonetDB and RateupDB support

aggregations if LEN is less than or equal to 4. MonetDB

is the fastest database when LEN is 2 and 4, which takes

0.017 s and 0.019 s to execute the query. The reason is that

the disk I/Os are not included in the results. Compared to

RateupDB, UltraPrecise reduces the execution time by 33.33%

(LEN=2) and 12.50% (LEN=4) because of the multi-threading

implementation and the compact data representation. As for

HEAVY.AI, it takes the longest time to execute the query

when LEN is 2, which is 0.47 s. PostgreSQL could accomplish

the query execution like UltraPrecise but with slower speeds.

When LEN is 8, 16, and 32, PostgreSQL needs 112.12%,

67.24%, and 29.25% more time.

3845

Authorized licensed use limited to: The Ohio State University. Downloaded on August 02,2024 at 02:59:34 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 12. Performance of GPU kernels evaluating various expressions. From left to right, the expressions are 1+a+2+11, 1+a+2−3, and 0.25×(a+b)×4.

Fig. 13. Performance of GPU kernels evaluating single arithmetic operators. From left to right, the expressions are a+ b, a× b, and a÷ b.

D. Synthesized Workloads

1) TPC-H Q1: We execute TPC-H Q1 in various databases,

where 4 columns, l_quantity, l_extendedprice,

l_discount, and l_tax, are defined as decimal types. In

the query execution, we need to evaluate 2 expressions and

7 aggregations with decimals. To more comprehensively test

our system, we extend the precision of l_quantity and

l_extendedprice in experiments and guarantee that the

results can be stored in the 32-bit word array with lengths of

2, 4, 6, and 8. For l_discount and l_tax, they are always

defined as DECIMAL(3, 2) because their values are between 0

and 1. We also test the original version of TPC-H Q1, where all

columns are DECIMAL(12, 2). In the experiments, we exclude

the scan time from all database systems.

Figure 14(b) shows the results. Among all methods, our

system is only slower than HEAVY.AI which is optimized for

low precision. For the original Q1 and LEN=2, HEAVY.AI

executes the query in 489.00 ms and 642.33 ms while our

system takes 684.67 ms and 685.00 ms. But HEAVY.AI fails

to support decimal type at higher precision. When LEN is 4,

8, 16, and 32, UltraPrecise spends 754.67 ms, 1135.33 ms,

2610.33 ms, and 6164.33 ms to execute the query. MonetDB

and RateupDB execute Q1 slower than UltraPrecise. MonetDB

is 1.64× (orignal Q1), 1.17× (LEN=2), and 1.52× (LEN=4)

slower. RateupDB is 1.70× (orignal Q1), 1.52× (LEN=2), and

1.61× (LEN=4) slower. PostgreSQL takes the most execution

time. UltraPrecise is 41.28× (original Q1), 39.55× (LEN=2),

38.56× (LEN=4), 28.09× (LEN=8), 14.46× (LEN=16), and

7.70× (LEN=32) faster than PostgreSQL. The compilation

and execution of UltraPrecise are individually measured for

Q1. With the LEN increasing from 2 to 32, the time proportion

of compilation decreases from 47% to 7%, though the absolute

compilation time increases from 320 ms to 423 ms due to the

longer code generated.

We have also evaluated the potential benefit of the compres-

sion technique of frame-of-reference (FOR) [28] to UltraPre-

cise for Q1 as a case study. We generate l_quantity and

l_extendedprice with different distributions so that the

DECIMAL columns are compressed into different sizes. We

decompress the values before the calculation in the kernel.

The experimental results show that when LEN is 4, 8, 16, and

32, the execution time including PCIe transferring could be ac-

celerated by 1.38×, 2.01×, 3.36×, and 4.80×, which depends

on how much data we could compress. If an advanced scheme

featuring little decompression overhead [29] is incorporated,

the performance of UltraPrecise could be further improved.

2) Other TPC-H queries: We execute other TPC-H queries

with UltraPrecise and RateupDB to see if the performance of

queries without DECIMAL is impaired. We set the scale to

10, and the experimental results are shown in Table I. For

all queries except Q18 and Q20, the performance results of

the two databases are consistent and comparable, affirming

the stability of UltraPrecision. By looking at the code, the

longer execution time of two queries results from subqueries

returning DECIMAL values. In RateupDB, delivering results of

subqueries to the outer query is not JIT-based and our efficient

representation cannot be applied.

SELECT c1 * c1 % N * c1 % N FROM R4;

Query 4

3) RSA: Rivest-Shamir-Adleman (RSA) [30] is one of the

most widely deployed cryptosystems, which uses a pair of

keys to encrypt and decrypt messages. To encrypt a message

X , we need to calculate Xe mod N , where N is a product of

two big prime numbers and (e,N) is the encryption key. With

the increasing size of N , the encrypted message gets harder

to exploit. In this experiment, we implement RSA encryption

in SQL. Query 4 encrypts the messages stored in the column

c1, which is decimal type. 4 versions of R4 are generated and

the precision of c1 is 17, 35, 71, and 143. The scale of c1 is

always 0. We set e as 3 and N is presented also as decimal

type constants with the precisions and scales of (18, 0), (36,

0), (72, 0), and (144, 0). In the end, we execute Query 4 to

accomplish the encryption of data stored in c1.

3846

Authorized licensed use limited to: The Ohio State University. Downloaded on August 02,2024 at 02:59:34 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
EXECUTION TIME (MS) OF TPC-H QUERIES IN RATEUPDB AND ULTRAPRECISE

Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

RateupDB 160 278 68 409 71 562 301 612 490 120 70 106 81 227 97 400 447 94 367 551 42

UltraPrecise 169 271 67 400 57 538 314 614 503 136 67 100 72 226 95 332 690 99 476 586 46

Fig. 14. Performance of various databases executing (a) Query 3, (b) TPC-H Q1, and (c) Query 4

HEAVY.AI fails to execute this query because it does

not support the modulo operator of the decimal type. We

measure the execution time including the scan operation for

all databases. The results are shown in Figure 14(c). We

can observe that UltraPrecise is the most efficient solution.

It finishes the encryption in 574.67 ms, 601.00 ms, 738.33

ms, and 1018.67 ms when LEN is 4, 8, 16, and 32. MonetDB

and RateupDB take 1520.67 ms and 1628.00 ms to execute

the query when LEN is 4. PostgreSQL encrypts the messages

22.22×, 47.55×, 106.19×, and 247.59× slower than UltraPre-

cise. H2 and CockroachDB are even slower than PostgreSQL

for these queries.

SELECT c1 - c1*c1*c1/6 + c1*c1*c1*c1*c1/120
FROM R5;

Query 5: A query of approximating sin(x + ε). We vary c1 to c2 or c3
for different input x and append more terms for higher precision results.

4) Trigonometric functions: Trigonometric functions are

used extensively in various fields, e.g., calculating distances

on geospatial datasets. An effective approach to deriving high-

precision results of trigonometric functions is using Taylor Se-

ries. An example is the sine function: sin(x) is approximated

with a polynomial x − x3

3! + x5

5! − x7

7! + · · · , where x is an

input radian. In the experiments, we compose SQL queries

to calculate sin(·) at high precision, and we show one of the

queries using 3 terms in Query 5.

The queries are executed on a relation R5 that has three

columns c1, c2, and c3, storing the input radian values.

All the columns are DECIMAL(9, 8). The radian values of

c1 are randomly generated that follow the normal distribution

N(0.01, 0.012), representing the extremely small angles close

to 0. The radian values of c2 and c3 follow the normal

distributions of N(0.78, 0.012) and N(1.56, 0.012), which

are close to π/4 and π/2, respectively. In the queries, we

expand the polynomial from 2 terms to 11 terms, expecting to

calculate increasingly precise results. We verify the results via

GMP [43], by which we calculate the ground truth results until

287 digits after the decimal point. The queries are executed in

PostgreSQL, CockroachDB, H2, and UltraPrecise. We report

the execution time in milliseconds as the y-axis and the mean

absolute error (MAE) as the x-axis in Figure 15, where each

point is one time of execution. For all queries, UltraPrecise

has the lowest execution time from 505.67 ms to 1668.33

ms, which is almost two orders of magnitude faster com-

pared to other databases. UltraPrecise is also more scalable.

For example, when extending the length of the polynomial

that calculates sin(0.78 + ε), i.e., more DECIMAL arithmetic

operations are added, UltraPrecise increases its execution time

by only 1131.33 ms. But the execution time is increased by

134.51 s, 191.27 s, and 385.57 s in PostgreSQL, H2, and

CockroachDB, respectively. When calculating sin(0.01 + ε),
the precision of results saturates after 4 or 5 terms appended

because DECIMAL(9, 8) cannot provide enough precision to

extremely small values. Though we follow the rules discussed

in Section III-B3, only 4 digits can hardly protect the divi-

sion from underflow in the cases. Other databases also have

such a problem except for H2. The reason is that H2 adds

20 additional digits in DECIMAL divisions. But this would

also incur high computation overhead in a workload with

intensive divisions. PostgreSQL executes the query faster when

appending the 10th term, reducing the execution time by 48.89

s, 54.87 s, and 67.76 s, respectively. This is due to that

PostgreSQL started to enable parallel scans in its query plan.

V. RELATED WORK

DECIMAL in databases. Fixed-point decimal arithmetic sys-

tems are databases dependent, with varying precision and

scale ranges. PostgreSQL and YugabyteDB support up to

131,072 digits before and 16,383 digits after the decimal

point, while Greenplum claims to impose no limits. Ver-

tica and PolarDB support a maximum precision of about

1,000. Another group of databases incorporates external li-

braries to support arbitrary-precision DECIMAL. SparkSQL

and H2 use java.math.BigDecimal, although SparkSQL

stopped supporting arbitrary-precision since version 1.5. Hive

initially used the same Java library, but they later developed

their decimal implementation, supporting up to a maximum

3847

Authorized licensed use limited to: The Ohio State University. Downloaded on August 02,2024 at 02:59:34 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 15. Performance of various databases when executing SQL queries that approximate sin(x+ ε) with different input x and varying polynomial lengths
from 2 to 11. From left to right, the functions are sin(0.01 + ε), sin(0.78 + ε), and sin(1.56 + ε).

TABLE II
THE DECIMAL PRECISIONS IN A GROUP OF DATABASES

Database Max (p, s) Database Max (p, s) Database Max (p, s) Database Max (p, s)

PostgreSQL [8] (147,455, 16,383) Greenplum [10] no limit PrestoDB [31] (38, 18) RateupDB [19] (36, 36)

YugabyteDB [9] (147,455, 16,383) CockroachDB [11] no limit SQL Server [32] (38, 38) Hive [33] (38, 38)

H2 [12] (100,000, 100,000) Vertica [34] (1,024, 1,024) HEAVY.AI [35] (18, 18) Oracle [36] (38, 127)

MongoDB [37] double and string SparkSQL [38] (38, 38) MonetDB [39] (38, 38) MySQL [40] (65, 30)

PolarDB [41] (1000, 1000) Google Spanner [42] (38, 9)

precision of 38. CockroachDB initially used a Go external

library for arbitrary-precision arithmetic but later developed

its customized library. To store DECIMAL data efficiently

and precisely, MongoDB stores two fields: a string type for

storing the exact value and a floating-point type for quick

arithmetic operations. In other databases, the DECIMAL type

of arbitrary-precision arithmetic is not feasible because of its

inferior performance. For instance, Google Spanner supports

up to a maximum precision of 38 and recommends using the

string type beyond this limit. HEAVY.AI is the most limited

database, only supporting DECIMAL data at the maximum pre-

cision of 18. RateupDB supports a max precision of 36, which

is the platform for our system implementation. Oracle deviates

from the convention of scale ≤ precision. The precisions of

DECIMAL supported in a group of databases are in Table II.

Arbitrary-precision arithmetic. Arbitrary-precision arith-

metic (APA) is widely supported by programming languages

and general arithmetic libraries. The supports to APA are

found in languages like Python, Java, C#, and MATLAB,

where java.math.BigDecimal in Java and the decimal
module in Python are two examples. Several individual li-

braries also support APA, among them the most widely used

one is the GNU Multiple Precision Arithmetic Library [43].

Class Library for Numbers [44] is another representative

one. Cooperative Groups Big Numbers (CGBN) [24], [25] is

developed by NVIDIA that realize arithmetic operations for

big positive integers on GPU. APA is also used in geometric

computation like Computational Geometry Algorithms Library

(CGAL) [45] and GeometricTools [46]. OpenSSL [47] and

Crypto++ [48] also require APA for cryptography operations.

GPU databases. CoGaDB [49] uses an “operator-at-a-time”

approach to query execution, with each operator having

a corresponding kernel function. GPUDB [50] and Hip-

pogriffDB [51] strive to alleviate the transmission overhead

between GPU and host. Kernel Weaver [52], GPL [53],

and HorseQC [54] optimize data movements on GPU when

executing kernels. DogQC [55] proposes to balance divergence

effects during the execution of the fusion pipeline. The het-

erogeneous designs [56]–[59] have also been explored.

JIT in query processing. System R [60] is the first to

propose code generation to optimize queries. DBToaster [61]

generates efficient C++ code for view maintenance queries,

while Cloudera Impala [62] focuses on code generation for

data parsing and expression calculation. HIQUE [63] uses

C++ templates to generate code for all operators and compile

them into a dynamic link library. Hyper [64] uses LLVM IR

code to speed up compilation. ROF [65], Tupleware [66],

and LegoBase [67] apply different optimization strategies.

Zhang et al. [68] propose to generate code dynamically for

data chunks. Zeuch et al. [69] provide an accurate cost

model for a JIT-enabled database. Other approaches [70], [71]

adaptively switch between translation and interpretation for

faster compilation.

VI. CONCLUSION

Fixed-point arithmetic operations in a database with exact-

ness and high precision are desirable but challenging. We

have achieved both high precision and high performance

for fixed-point arithmetic operations through effective GPU

acceleration. UltraPrecise offers comparable performance to

high-performance databases that are in a low-precision range.

However, its arithmetic operations are faster by two orders of

magnitude compared to the databases that support arbitrary-

precision DECIMAL.

ACKNOWLEDGMENT

This work is supported in part by the National Natural

Science Foundation of China, No. 62102229, Natural Science

Foundation of Shandong Province, China, No. ZR2022ZD02,

and the National Science Foundation under grants CCF-

2005884, CCF-2210753, OAC-2310510, and CCF-2312507.

3848

Authorized licensed use limited to: The Ohio State University. Downloaded on August 02,2024 at 02:59:34 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] H. Wang, C. Zaniolo, and C. R. Luo, “ATLAS: A small but complete
SQL extension for data mining and data streams,” in Proceedings of the
VLDB Endowment, 2003, pp. 1113–1116.

[2] M. Blacher, J. Giesen, S. Laue, J. Klaus, and V. Leis, “Machine learning,
linear algebra, and more: Is SQL all you need,” Conference on Innovative
Data Systems Research, pp. 1–6, 2022.

[3] X. Feng, A. Kumar, B. Recht, and C. Ré, “Towards a unified architecture
for In-RDBMS analytics,” in Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, 2012, pp. 325–336.

[4] D. Mahajan, J. K. Kim, J. Sacks, A. Ardalan, A. Kumar, and H. Es-
maeilzadeh, “In-RDBMS hardware acceleration of advanced analytics,”
Proceedings of the VLDB Endowment, vol. 11, no. 11, 2018.

[5] J. V. D’silva, F. De Moor, and B. Kemme, “AIDA: Abstraction for
advanced in-database analytics,” Proceedings of the VLDB Endowment,
vol. 11, no. 11, pp. 1400–1413, 2018.

[6] IEEE, “IEEE standard for binary floating-point arithmetic,” ANSI/IEEE
Std 754-1985, pp. 1–20, 1985.

[7] D. Goldberg, “What every computer scientist should know about
floating-point arithmetic,” ACM Computing Surveys, vol. 23, no. 1, pp.
5–48, 1991.

[8] PostgreSQL, “PostgreSQL Documentation: Datatypes,” https://www.
postgresql.org/docs/current/datatype-numeric.html, 2023, accessed on
July 22, 2023.

[9] YugabyteDB, “YugabyteDB Documentation: Datatypes,” https://docs.
yugabyte.com/preview/api/ysql/datatypes/type numeric/, 2023, accessed
on July 22, 2023.

[10] GreenPlum, “GreenPlums Documentation: Datatypes,” https://gpdb.
docs.pivotal.io/6-9/ref guide/data types.htmlW, 2023, accessed on July
22, 2023.

[11] CockroachDB, “CockroachDB Documentation: Datatypes,” https://
www.cockroachlabs.com/docs/stable/decimal.html, 2023, accessed on
July 22, 2023.

[12] H2, “H2 Documentation: Datatypes,” https://www.h2database.com/html/
datatypes.html, 2023, accessed on July 22, 2023.

[13] D. H. Bailey, R. Barrio, and J. M. Borwein, “High-precision compu-
tation: Mathematical physics and dynamics,” Applied Mathematics and
Computation, vol. 218, no. 20, pp. 10 106–10 121, 2012.

[14] N. Vuković, M. Petrović, and Z. Miljković, “A comprehensive exper-
imental evaluation of orthogonal polynomial expanded random vector
functional link neural networks for regression,” Applied Soft Computing,
vol. 70, pp. 1083–1096, 2018.

[15] D. H. Bailey and J. M. Borwein, “High-precision arithmetic in mathe-
matical physics,” Mathematics, vol. 3, no. 2, pp. 337–367, 2015.

[16] D. H. Bailey, J. M. Borwein, R. E. Crandall, and I. J. Zucker, “Lattice
sums arising from the poisson equation,” Journal of Physics A: Mathe-
matical and Theoretical, vol. 46, no. 11, p. 115201, 2013.

[17] Z. Qu and D. Tkachenko, “Using arbitrary precision arithmetic to
sharpen identification analysis for DSGE models,” https://open.bu.edu/
handle/2144/41799, 2020.

[18] PostgreSQL, “PostgreSQL Database Management System,”
https://github.com/postgres/postgres/blob/master/src/backend/utils/
adt/numeric.c, 2023, accessed on July 22, 2023.

[19] R. Lee, M. Zhou, C. Li, S. Hu, J. Teng, D. Li, and X. Zhang, “The art
of balance: A RateupDB™ experience of building a CPU/GPU hybrid
database product,” Proceedings of the VLDB Endowment, pp. 2999–
3013, 2021.

[20] A. Karatsuba, “Multiplication of multidigit numbers on automata,” in
Soviet physics doklady, vol. 7, 1963, pp. 595–596.

[21] A. Schonhage, “Schnelle multiplikation grosser zahlen,” Computing,
vol. 7, pp. 281–292, 1971.

[22] Wikipedia, “Newton’s method,” https://en.wikipedia.org/wiki/Newton%
27s method, 2023, accessed on July 22, 2023.

[23] R. E. Goldschmidt, “Applications of division by convergence,” Ph.D.
dissertation, Massachusetts Institute of Technology, jun 1964. [Online].
Available: http://hdl.handle.net/1721.1/11113

[24] NVIDIA Corp, “CGBN: CUDA accelerated multiple precision arith-
metic (big num) using cooperative groups,” https://github.com/NVlabs/
CGBN/, 2023, accessed on July 22, 2023.

[25] N. Emmart, J. Luitjens, C. Weems, and C. Woolley, “Optimizing
modular multiplication for nvidia’s maxwell GPUs,” in 2016 IEEE 23nd
symposium on computer arithmetic, 2016, pp. 47–54.

[26] S. Baxter, “Moderngpu 2.0,” 2016, unpublished. [Online]. Available:
https://github.com/moderngpu/moderngpu/wiki

[27] NVIDIA Nsight Compute, https://developer.nvidia.com/nsight-compute,
2023, accessed on Nov 8, 2023.

[28] J. Goldstein, R. Ramakrishnan, and U. Shaft, “Compressing relations
and indexes,” in Proceedings 14th International Conference on Data
Engineering, 1998, pp. 370–379.

[29] A. Shanbhag, B. W. Yogatama, X. Yu, and S. Madden, “Tile-based
lightweight integer compression in gpu,” in Proceedings of the 2022
International Conference on Management of Data, 2022, pp. 1390–1403.

[30] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, pp. 120–126, 1978.

[31] PrestoDB, “PrestoDB Documentation: Datatypes,” https://prestodb.io/
docs/current/language/types.html, 2023, accessed on July 22, 2023.

[32] SQL Server, “SQL Server Documentation: Datatypes,” https://learn.
microsoft.com/en-us/sql/t-sql/data-types/, 2023, accessed on July 22,
2023.

[33] Hive, “Hive Documentation: Datatypes,” https://cwiki.apache.org/
confluence/download/attachments/27362075/Hive Decimal Precision
Scale Support.pdf, 2023, accessed on July 22, 2023.

[34] Vertica, “Vertica Documentation: Datatypes,” https://www.vertica.com/
docs/9.3.x/HTML/Content/Authoring/SQLReferenceManual/DataTypes/
Numeric/NUMERIC.htm, 2023, accessed on July 22, 2023.

[35] HEAVY.AI, “HEAVY.AI Documentation: Datatypes,” https://docs.heavy.
ai/sql/data-definition-ddl/datatypes-and-fixed-encoding, 2023, accessed
on July 22, 2023.

[36] Oracle, “Oracle Documentation: Datatypes,” https://docs.oracle.com/en/
database/oracle/oracle-database/21/odpnt/DecimalMembers.html, 2023,
accessed on July 22, 2023.

[37] MongoDB, “MongoDB Documentation: Datatypes,” https://www.
mongodb.com/docs/v3.0/tutorial/model-monetary-data/, 2023, accessed
on July 22, 2023.

[38] SparkSQL, “SparkSQL Documentation: Datatypes,” https://spark.
apache.org/docs/2.2.0/sql-programming-guide.html, 2023, accessed on
July 22, 2023.

[39] MonetDB, “MonetDB Documentation: Datatypes,” https:
//www.monetdb.org/documentation-Sep2022/user-guide/sql-manual/
data-types/base-types/, 2023, accessed on July 22, 2023.

[40] MySQL, “MySQL Documentation: Datatypes,” https://dev.mysql.com/
doc/refman/8.0/en/numeric-type-syntax.html, 2023, accessed on July 22,
2023.

[41] PolarDB, “PolarDB Documentation: Datatypes,” https://www.
alibabacloud.com/help/en/polardb-for-oracle/latest/numeric-type,
2023, accessed on July 22, 2023.

[42] Google Spanner, “Google Spanner Documentation: Datatypes,” https:
//cloud.google.com/spanner/docs/storing-numeric-data/, 2023, accessed
on July 22, 2023.

[43] The GNU Multiple Precision Arithmetic Library, https://gmplib.org/,
2023, accessed on July 22, 2023.

[44] B. Haible and R. B. Kreckel, “CLN - Class Library for Numbers,” https:
//www.ginac.de/CLN/, 2023, accessed on July 22, 2023.

[45] A. Fabri and S. Pion, “CGAL: The computational geometry algorithms
library,” in Proceedings of the 17th ACM SIGSPATIAL international
conference on advances in geographic information systems, 2009, pp.
538–539.

[46] D. Eberly, “Geometric tools,” https://www.geometrictools.com/, 2023,
accessed on July 22, 2023.

[47] OpenSSL Cryptography and SSL/TLS Toolkit, http://www.openssl.org/,
2023, accessed on July 22, 2023.

[48] Crypto++ Library 8.7, https://www.cryptopp.com/, 2023, accessed on
July 22, 2023.

[49] S. Breß, “The design and implementation of CoGaDB: A column-
oriented GPU-accelerated DBMS,” Datenbank-Spektrum, vol. 14, pp.
199–209, 2014.

[50] Y. Yuan, R. Lee, and X. Zhang, “The Yin and Yang of processing
data warehousing queries on GPU devices,” Proceedings of the VLDB
Endowment, vol. 6, no. 10, pp. 817–828, 2013.

[51] J. Li, H.-W. Tseng, C. Lin, Y. Papakonstantinou, and S. Swanson,
“Hippogriffdb: Balancing I/O and GPU bandwidth in big data analytics,”
Proceedings of the VLDB Endowment, vol. 9, no. 14, pp. 1647–1658,
2016.

3849

Authorized licensed use limited to: The Ohio State University. Downloaded on August 02,2024 at 02:59:34 UTC from IEEE Xplore.  Restrictions apply. 



[52] H. Wu, G. Diamos, S. Cadambi, and S. Yalamanchili, “Kernel Weaver:
Automatically fusing database primitives for efficient GPU computa-
tion,” in 2012 45th Annual IEEE/ACM International Symposium on
Microarchitecture, 2012, pp. 107–118.

[53] J. Paul, J. He, and B. He, “GPL: A GPU-based pipelined query
processing engine,” in Proceedings of the 2016 International Conference
on Management of Data, 2016, pp. 1935–1950.

[54] H. Funke, S. Breß, S. Noll, V. Markl, and J. Teubner, “Pipelined query
processing in coprocessor environments,” in Proceedings of the 2018
International Conference on Management of Data, 2018, pp. 1603–1618.

[55] H. Funke and J. Teubner, “Data-parallel query processing on non-
uniform data,” Proceedings of the VLDB Endowment, vol. 13, no. 6,
pp. 884–897, 2020.

[56] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V.
Sander, “Relational query coprocessing on graphics processors,” ACM
Transactions on Database Systems, vol. 34, no. 4, pp. 1–39, 2009.

[57] S. Breß, B. Köcher, H. Funke, S. Zeuch, T. Rabl, and V. Markl,
“Generating custom code for efficient query execution on heterogeneous
processors,” The VLDB Journal, vol. 27, pp. 797–822, 2018.

[58] P. Chrysogelos, M. Karpathiotakis, R. Appuswamy, and A. Ailamaki,
“HetExchange: Encapsulating heterogeneous CPU-GPU parallelism in
JIT compiled engines,” Proceedings of the VLDB Endowment, vol. 12,
no. 5, pp. 544–556, 2019.

[59] B. W. Yogatama, W. Gong, and X. Yu, “Orchestrating data placement
and query execution in heterogeneous CPU-GPU DBMS,” Proceedings
of the VLDB Endowment, vol. 15, no. 11, pp. 2491–2503, 2022.

[60] D. D. Chamberlin, M. M. Astrahan, M. W. Blasgen, J. N. Gray, W. F.
King, B. G. Lindsay, R. Lorie, J. W. Mehl, T. G. Price, F. Putzolu et al.,
“A history and evaluation of system R,” Communications of the ACM,
vol. 24, no. 10, pp. 632–646, 1981.

[61] Y. Ahmad and C. Koch, “DBToaster: A SQL compiler for high-
performance delta processing in main-memory databases,” Proceedings
of the VLDB Endowment, vol. 2, no. 2, pp. 1566–1569, 2009.

[62] S. Wanderman-Milne and N. Li, “Runtime code generation in cloudera
impala.” Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, vol. 37, no. 1, pp. 31–37, 2014.

[63] K. Krikellas, S. D. Viglas, and M. Cintra, “Generating code for holistic
query evaluation,” in 2010 IEEE 26th International Conference on Data
Engineering, 2010, pp. 613–624.

[64] T. Neumann, “Efficiently compiling efficient query plans for modern
hardware,” Proceedings of the VLDB Endowment, vol. 4, no. 9, pp.
539–550, 2011.

[65] P. Menon, T. C. Mowry, and A. Pavlo, “Relaxed operator fusion for in-
memory databases: Making compilation, vectorization, and prefetching
work together at last,” Proceedings of the VLDB Endowment, vol. 11,
no. 1, pp. 1–13, 2017.

[66] A. Crotty, A. Galakatos, K. Dursun, T. Kraska, C. Binnig, U. Cetintemel,
and S. Zdonik, “An architecture for compiling UDF-centric workflows,”
Proceedings of the VLDB Endowment, vol. 8, no. 12, pp. 1466–1477,
2015.

[67] Y. Klonatos, C. Koch, T. Rompf, and H. Chafi, “Building efficient query
engines in a high-level language,” Proceedings of the VLDB Endowment,
vol. 7, no. 10, pp. 853–864, 2014.

[68] W. Zhang, J. Kim, K. A. Ross, E. Sedlar, and L. Stadler, “Adaptive
code generation for data-intensive analytics,” Proceedings of the VLDB
Endowment, vol. 14, no. 6, pp. 929–942, 2021.

[69] S. Zeuch, H. Pirk, and J.-C. Freytag, “Non-invasive progressive opti-
mization for in-memory databases,” Proceedings of the VLDB Endow-
ment, vol. 9, no. 14, pp. 1659–1670, 2016.

[70] A. Kohn, V. Leis, and T. Neumann, “Adaptive execution of compiled
queries,” in 2018 IEEE 34th International Conference on Data Engi-
neering, 2018, pp. 197–208.

[71] A. Krolik, C. Verbrugge, and L. Hendren, “r3d3: Optimized query
compilation on GPUs,” in 2021 IEEE/ACM International Symposium
on Code Generation and Optimization, 2021, pp. 277–288.

3850

Authorized licensed use limited to: The Ohio State University. Downloaded on August 02,2024 at 02:59:34 UTC from IEEE Xplore.  Restrictions apply. 


