
X-Blossom: Massive Parallelization of Graph Maximum Matching
Dayi Fan

The Ohio State University

fan.1090@osu.edu

Rubao Lee

Freelance

lee.rubao@ieee.org

Xiaodong Zhang

The Ohio State University

zhang@cse.ohio-state.edu

ABSTRACT
The blossom algorithm computes maximum matchings in graphs

and has been widely applied across diverse domains, including

machine learning, economic analysis, and other essential data an-

alytics applications. As data scales and the demand for real-time

processing intensifies, high-performance computing solutions have

become indispensable. Over the years, substantial research efforts

have been dedicated to improving the sequential blossom algo-

rithm. However, developing an efficient parallel solution remains

highly challenging due to the algorithm’s intricate execution pat-

terns, sequential recursive dependencies, dynamic data structure

modifications, and inefficient path search.

By thoroughly analyzing existing solutions, we have identified

critical issues and proposed a new parallel framework called X-

Blossom. This framework eliminates recursion entirely, enables

efficient searches for multiple disjoint paths, and employs a simple

path table to trace paths, removing the need for dynamic graphs and

trees. These efforts in algorithm development result in significant

performance enhancement. Extensive experiments on real-world

datasets show that X-Blossom outperforms all existing solutions,

achieving up to 992x speedup compared to the fastest sequential

baseline, and an average of 431x speedup over the state-of-the-

art parallel solution using 8 cores. It also demonstrates excellent

scalability, achieving an average speedup of 1.72x when threads

double in scalability tests to 64 cores. To the best of our knowledge,

X-Blossom is the fastest solution for this class of graph algorithms.

PVLDB Reference Format:
Dayi Fan, Rubao Lee, and Xiaodong Zhang. X-Blossom: Massive

Parallelization of Graph Maximum Matching. PVLDB, 18(10): 3339-3353,

2025.

doi:10.14778/3748191.3748199

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/Davis-Fan/X-Blossom.

1 INTRODUCTION
As one of the most fundamental problems in graph theory, graph

maximum matching has found a wide spectrum of applications

across numerous domains and emerging technologies. Specifically,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 10 ISSN 2150-8097.

doi:10.14778/3748191.3748199

in machine learning, graph maximum matching is applied to multi-

object tracking [45, 65, 102] and intelligent recommendation sys-

tems [44, 74, 95] to improve data association. Moreover, in econom-

ics, graph maximum matching plays a crucial role by optimizing

the allocation of resources in areas such as online markets [66, 71],

ride-sharing systems [43, 96, 104], supply chain management [94,

103, 113], and financial exchange networks [12, 25, 30, 114]. With

the growing popularity of social media, graph maximum matching

is increasingly used in game user pairing [3, 34] and dating plat-

forms [81, 91]. In healthcare, it significantly contributes to kidney

exchange programs [82] and optimizes emergency systems [31, 69].

A matching in a graph is a set of edges such that no two edges

share a common vertex. The maximum matching, also known as

the maximum-cardinality matching, is a matching that includes

the largest possible number of edges. An example of matching is

shown in Figure 1. Essentially, finding the maximum matching in a

graph can be viewed as the process of pairing as many vertices as

possible, which facilitates optimal resource allocation and efficient

connections, thereby boosting various real-world applications.

(a) A graph (b) A valid matching (c) The maximum matching

Figure 1: (a) is a graph. (b) shows a valid matching (red edges
indicate the matching). (c) is the maximummatching.

Even today, solving the maximum matching for general graphs

is still considered complicated [51, 98] due to the intricate com-

putation process and the high complexity of algorithms. The first

polynomial-time solution for general graphs was proposed in 1965,

known as the blossom algorithm [32, 33], which has also become the

basic and most widely used method. During matching computation,

the blossom algorithm handles odd-length cycles by recursively

modifying the graph structure, with a time complexity of 𝑂 (𝑉 2𝐸),
where 𝑉 is the number of vertices and 𝐸 is the number of edges. In

the following decades, extensive research efforts have focused on

enhancing the efficiency of the sequential blossom algorithm by

optimizing its implementation methods [14, 37–40] or tailoring it

to specific graph structures [41, 48]. However, large-scale graphs

in modern data-intensive applications often contain millions of

vertices and edges [16, 84], turning sequential execution into an

impractical choice for real-time performance. Therefore, developing

an efficient and scalable parallel framework for graph maximum

matching is not only crucial but also imperative.

Unfortunately, parallelizing the computation of graph maximum

matching remains a highly non-trivial task. Existing research ef-

forts [87, 93] to develop parallel blossom algorithms have achieved

limited performance, due to the inherent difficulties of the problem.

The goal of the blossom algorithm is to iteratively find valid paths

https://doi.org/10.14778/3748191.3748199
https://github.com/Davis-Fan/X-Blossom
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3748191.3748199

in the graph that can increase the matching size until it reaches its

maximum. Three critical issues arise during parallel processing: (1)

In the blossom algorithm, odd-length cycles in the graph may be

contracted into a single vertex to recursively generate new graphs,

which highlights that its operations are, by nature, sequential. This

is the fundamental obstacle that hinders parallelization and has not

been addressed by any existing parallel work. (2) In each search,

at most one valid path can be found, so the size of the matching

can increase by only one, leading to significant computational over-

head. (3) The algorithm employs graphs and trees as dynamic data

structures that are continuously being modified, causing irregular

memory access patterns and severe data race issues.

These three systematic issues motivate us to propose an efficient

and practical parallel framework that enables large-scale computa-

tion of maximum matching. By carefully examining the recursive

process of odd cycle contracting, we propose a new recursion-free

blossom algorithm that only records the valid path of each node in

the cycle without the need for contraction. Unlike using a stack-

based simulation to achieve a non-recursive implementation, our

approach has fundamentally redefined the algorithm’s logic and

thus eliminates the recursion. Based on this, we further develop a

new parallel framework, called X-Blossom, with an efficient lock-

free synchronization mechanism that enables finding multiple valid

disjoint paths concurrently, allowing the matching size to increase

as much as possible in a single function call. Moreover, instead of

using dynamic trees, we have implemented a path table to store the

valid path for each vertex, removing the overhead of building and

deconstructing trees and minimizing the time required for tracing

paths. Our contributions are summarized as follows.

• We carefully analyze the intricate executions of the blos-

som algorithm, identify several fundamental issues in paral-

lelization, and uncover the essence of blossom contraction.

Developing an efficient parallel solution relies on effectively

addressing these challenges.

• We propose a sequential recursion-free blossom algorithm

that eliminates the recursive process of blossom contraction,

serving as the foundation for massive parallel computation,

along with the mathematical proof of its correctness.

• We further develop a parallel recursion-free blossom algo-

rithm that enables concurrently finding multiple disjoint

paths. It also incorporates an efficient lock-free synchro-

nization mechanism and employs a path table to trace paths,

eliminating the need for dynamic graphs and trees.

• Combining all efforts above, we develop X-Blossom, a mas-

sively parallel computation framework for graph maximum

matching, which has been implemented on multicore pro-

cessors. Extensive experiments show that X-Blossom signifi-

cantly outperforms existing solutions and exhibits excellent

scalability. It achieves up to 992x speedup over the fastest

sequential implementation and surpasses the state-of-the-

art parallel solution with an average of 431x speedup on

real-world datasets by using 8 cores. In the scalability test

to 64 cores, it demonstrates an average speedup of 1.72x

when the number of threads doubles.

The paper is organized as follows. The basic blossom algorithm

is introduced in §2. Then, we identify key issues and insights in §3.

The sequential recursion-free algorithm is presented in §4. Details

of the parallel recursion-free algorithm and its implementation are

in §5. The experimental performance is demonstrated in §6. Finally,

related works are discussed in §7, and we conclude our work in §8.

2 BACKGROUND
2.1 Matching and Augmenting Path
In a graph, a matching (denoted as𝑀) is defined as a set of edges

such that no two edges share a common vertex. The size of the

matching, represented as |𝑀 |, is the number of edges in 𝑀 , also

referred to as its cardinality. The maximum matching is a matching

with the maximum cardinality, which contains the largest possible

number of edges. Edges in𝑀 are called matched edges, while edges

not in𝑀 are unmatched edges. Similarly, a vertex is matched if it

is an endpoint of one edge in𝑀 ; otherwise, it is unmatched.

Figure 2(a) illustrates a graph 𝐺 with a valid matching𝑀1. The

red edges represent the edges in 𝑀1, while the black edges are

unmatched edges. An edge is denoted as (𝑣1, 𝑣2) to represent an

undirected edge between vertex 𝑣1 and 𝑣2. In this figure, 𝑀1 =

{(1, 2), (3, 4)} and |𝑀1 | = 2. Both 0 and 5 are unmatched vertices.

(a) Graph G and a matching M1 (b) An alternating path (c) An augmenting path

(d) Update the matching M1 to a new matching M2 by using the augmenting path

update

Figure 2: Matching, alternating path, and augmenting path
(red edges are matched, black edges are unmatched)

An alternating path is a path in a graph where edges alternate

between unmatched edges and matched edges. A path is denoted

as (𝑣1, 𝑣2, . . . , 𝑣𝑘), representing the path from vertex 𝑣1 to 𝑣𝑘 in the

graph. Figure 2(b) shows an alternating path (0, 1, 2), because edge
(0, 1) is unmatched and edge (1, 2) is matched. An augmenting path
is an alternating path that starts and ends at unmatched vertices.

In Figure 2(c), the path (0, 1, 2, 3, 4, 5) is an augmenting path since

all edges alternate between being unmatched and matched, and the

start vertex 0 and end vertex 5 are both unmatched.

Finding augmenting paths is crucial for increasing the size of the

current matching. In an augmenting path, flipping all unmatched

edges to be matched and all matched edges to be unmatched will

generate a new matching with its size increased by one. As shown

in Figure 2(d), an augmenting path for 𝑀1 is (0, 1, 2, 3, 4, 5), and
if the unmatched edges (0, 1), (2, 3) and (4, 5) are changed to be

matched while the matched edges (1, 2) and (3, 4) are flipped to

be unmatched, a new matching 𝑀2 will be formed with the size

increased to 3. According to Berge’s theorem [9], a matching is max-

imum if and only if no augmenting path can be found. Thus, the

main idea of maximum matching algorithms is to find augmenting

paths and update the matching until no valid path exists.

2.2 Finding Augmenting Paths
Now the task of computing maximummatching has been converted

into the search for augmenting paths. Finding augmenting paths

in the graph relies on a pivotal tool called alternating tree, which
provides a structured way to organize the search. An alternating

tree is a tree rooted at an unmatched vertex from the graph and

can expand by adding two edges each time: one unmatched edge

followed by one matched edge. Thus, the path from its root to any

leaf node is an alternating path and always has an even length. The

forest consisting of these alternating trees is the alternating forest.
In Figure 3(a), the unmatched vertices are 0 and 5. Thus, two

alternating trees can be constructed, rooted at 0 and 5, respectively.

Since edge (0, 1) is unmatched and edge (1, 2) is matched, the first

tree expands by adding these two edges after the root 0. Similarly,

the second tree adds the unmatched edge (5, 4) and the matched

edge (4, 3) after its root 5, as shown in Figure 3(b). For a node
1 𝑣

in the alternating tree, if the length of the path from the root to 𝑣

is even, it is classified as an even node; otherwise, it is an odd node.
The root node is an even node since the path length to itself is 0.

expand

expandAlternating Tree 1

Alternating Tree 2

Even Node
Odd Node

Alternating Tree 1

Alternating Tree 2

(c) Alternating path (0,1,2) + (2,3) + alternating path (3,4,5) = augmenting path (0,1,2,3,4,5)

(a) Graph and matching (b) An alternating forest

Figure 3: Finding augmenting paths by alternating trees

An augmenting path can be found if there exists an unmatched

edge connecting two even nodes from different alternating trees. In

an alternating tree, the root is an unmatched vertex, and the path

from the root to an even node alternates between unmatched and

matched edges with even length. Connecting two such paths with

an unmatched edge forms an alternating path whose endpoints are

both unmatched vertices, that is, an augmenting path. For example,

in Figure 3(c), edge (2, 3) is an unmatched edge which links the even

node 2 from the first tree and the even node 3 from the second tree.

The path from the root to node 2 in the first tree is (0, 1, 2). Adding
the unmatched edge (2, 3) to this path results in (0, 1, 2, 3). The path
from the root to node 3 in the second tree is (5, 4, 3). Appending its
reverse to (0, 1, 2, 3) produces the augmenting path (0, 1, 2, 3, 4, 5).

2.3 Blossom Algorithm
Constructing alternating trees is an effective method for search-

ing augmenting paths for bipartite graphs [5, 7, 27, 57]. In general

graphs, the presence of odd-length cycles complicates this approach

[80]. The blossom algorithm [33] addresses this challenge by in-

troducing a mechanism to handle these odd-length cycles through

recursive contraction. For a given graph 𝐺0 and matching 𝑀0, to

find an augmenting path, the main idea is also to build alternating

trees. An augmenting path is identified when an unmatched edge

connects two even nodes from different alternating trees. However,

1
We use node for trees and vertex for graphs to maintain a clear distinction.

if an unmatched edge connects two even nodes within the same
tree, it forms an odd-length alternating cycle, named as a "blossom".

The algorithm then contracts this cycle in 𝐺0 (denoted as blossom

𝐵0) into a single vertex, creating a new graph 𝐺1. If another blos-

som 𝐵1 is found in𝐺1, it will also be contracted, further modifying

𝐺1 into a new graph 𝐺2, continuing this recursive process. Once

an augmenting path 𝑃2 is identified in 𝐺2, the blossom 𝐵1 will be

"lifted", restoring 𝑃2 in𝐺2 to the corresponding augmenting path

𝑃1 in 𝐺1. Similarly, the blossom 𝐵0 will be lifted, transforming 𝑃1
in 𝐺1 into the final augmenting path 𝑃0 in the original graph 𝐺0.

The details are shown in Algorithm 1.

Algorithm 1 The Blossom Algorithm

Input: A graph𝐺
Output: A maximum matching𝑀
1: 𝑀 ← empty set

2: while True do ⊲ continue searching for augmenting paths until none remain

3: 𝑃 ← Find-Augmenting-Path(𝐺 ,𝑀)

4: if 𝑃 is empty then
5: break ⊲ no augmenting path found, so the matching is maximum

6: else
7: update𝑀 with the augmenting path 𝑃 ⊲ update the matching

8: end if
9: end while
10:

11: procedure Find-Augmenting-Path(𝐺 ,𝑀) ⊲ the search procedure

12: 𝐹 ← empty forest

13: 𝑁 ← empty set, 𝑁next ← empty set ⊲ store nodes to be checked when tree expands

14: for each unmatched vertex𝑢 do
15: add𝑢 as single-node tree to 𝐹 and add𝑢 to 𝑁 ⊲ building alternating trees

16: end for
17: while 𝑁 ≠ ∅ do
18: for each node 𝑣 in 𝑁 do ⊲ every 𝑣 in 𝑁 is an even node actually

19: for each unmatched edge 𝑒 = (𝑣, 𝑤) in𝐺 do
20: if 𝑤 ∉ 𝐹 then ⊲ expand the tree

21: 𝑥 ← the vertex matched with 𝑤 in𝑀
22: add edges (𝑣, 𝑤) and (𝑤,𝑥) to the tree of 𝑣 and add 𝑥 to 𝑁next

23: else
24: if 𝑤 is an even node then
25: if root(𝑣) ≠ root(𝑤) then ⊲ find an augmenting path

26: 𝑃 ← path(root(𝑣), ..., 𝑣) + (𝑣, 𝑤) + path(𝑤, ..., root(𝑤))
27: return 𝑃
28: else ⊲ find a blossom

29: 𝐵 ← blossom formed by 𝑒 and edges on the path (𝑣, ..., 𝑤) in tree

30: 𝐺 ′, 𝑀 ′ ← contract𝐺 and𝑀 according to 𝐵

31: 𝑃 ′ ← Find-Augmenting-Path(𝐺 ′ ,𝑀 ′)
32: 𝑃 ← 𝑃 ′ lifted with blossom 𝐵
33: return 𝑃
34: end if
35: end if
36: end if
37: end for
38: end for
39: 𝑁 ← 𝑁next ⊲ nodes are updated after all nodes in 𝑁 have been checked

40: end while
41: return empty path

42: end procedure

In the search procedure, the set𝑁 stores the nodes that need to be

checked in each iteration. Initially, all roots are included in the set.

As the tree expands, the newly introduced even node 𝑥 is inserted

into the set 𝑁next, which will be checked in the next iteration.

Each unmatched edge incident to the nodes in 𝑁 is examined to

determine whether it can expand the tree, construct an augmenting

path, or form a blossom cycle. The blossom algorithm terminates

when no augmenting path can be found.

Figure 4 is an example that illustrates the execution pattern of

the blossom algorithm. Initially, the matching set is empty, and

every vertex in 𝐺0 is unmatched. When the search procedure runs,

it constructs six single-node alternating trees in the forest, where

each root is an even node. Then, it examines all unmatched edges

related to these even nodes. The unmatched edge (0, 1) connects

node 0 and node 1 from two different trees, forming an augmenting

path: (0, 1). Updating the matching by using this path will flip edge

(0, 1) to be matched, resulting 𝑀0 = {(0, 1)}. Following this, the

search procedure runs again on 𝐺0 and only four alternating trees

are built this time (since vertices 0 and 1 are matched). Similarly,

the augmenting path (2, 3) is found and the matching is updated to

𝑀0 = {(0, 1), (2, 3)}, as presented in the first two rows in Figure 4.

Augmenting PathForest 1

update

Forest 2 Augmenting Path

update

Forest 3

find a
blossom

A blossom with 5 nodes

contract

Forest 4
Augmenting Path in

lift

Augmenting Path in

update

Next Recursion Depth

Figure 4: The execution pattern of blossom algorithm

Next, the search procedure is applied again to𝐺0, as shown in

the third row of Figure 4. It builds two trees and the tree rooted

at node 4 then expands two branches: one by adding (4, 0) and
(0, 1), and another by adding (4, 3) and (3, 2). Two new even nodes,

1 and 2, are introduced, and an unmatched edge (1, 2) connects
these two nodes within a single tree, indicating that a blossom

is formed. The green circle displays this odd-length alternating

cycle: (4, 0, 1, 2, 3, 4). The procedure then contracts this blossom

cycle in 𝐺0 into a new vertex 6, generating a new graph 𝐺1. All

edges inside the blossom will be deleted and all edges connected to

the blossom cycle will be incident to the new vertex. From now on,

the computation will proceed to the next recursion depth. For this

new graph 𝐺1, a simple augmenting path (5, 6) is found. However,
this augmenting path is only valid for𝐺1. To restore an augmenting

path in 𝐺0, the blossom is lifted upon exiting the recursion and the

augmenting path (5, 6) is unfolded as path (5, 3, 2, 1, 0, 4). Then, the
matching is updated to𝑀0 = {(5, 3), (2, 1), (0, 4)}, which is finally

a maximum matching because no augmenting paths remain.

3 CHALLENGES AND INSIGHTS
3.1 Challenges in Parallel Processing
As data scales exponentially in modern applications, the transition

from sequential to massively parallel processing has become crucial

for solving maximum matching problems. However, the complex

execution patterns of the blossom algorithm pose formidable chal-

lenges to parallelization, making it a highly non-trivial task both in

algorithm and implementation.

Challenge #1: The recursive process of blossom contraction

involves sequential modifications to the graph. The graph and aug-

menting path at the current recursion level rely on the structure

of the blossom from the previous level, resulting in intricate data

dependencies. Using stack-based simulation to replace recursion

cannot resolve such inherent dependencies, which remain a funda-

mental structural issue in parallel computing. All existing parallel

efforts [87, 93] focus on conducting concurrent searches for the aug-

menting path within each recursion level but have not addressed

this critical challenge, thus failing to leverage parallelism effectively.

Challenge #2: Only one augmenting path can be returned

by the search procedure. As a result, the matching size increases by

only one for each search. For a graph with 𝑛 vertices, if all vertices

can be matched, the search must be repeated
𝑛
2
times sequentially

because each path changes the state of the current matching. This

makes it a time-intensive and computationally expensive approach

for finding the maximum matching in large-scale graphs with mil-

lions of vertices.

Challenge #3: Dynamic data structures—graphs and trees—

are continuously being updated and expanded during the execution

of the blossom algorithm. This leads to serious data race problems

when multiple threads attempt to modify the same tree or graph

simultaneously. It also involves irregular memory access patterns,

which degrade parallel performance when tracing paths in trees.

Moreover, constructing and deconstructing these dynamic graphs

and trees introduces additional computational costs.

These three inherent challenges are systematic and persistent in

the blossom algorithm. To develop an efficient and scalable parallel

framework, these issues must be carefully addressed. Although

difficult, opportunities are often hidden within challenges if we

solve the problem with the first principle thinking.

3.2 Blossom Contraction
Insight 1: The essence of blossom contraction is to examine all un-
matched edges associated with each node in the blossom cycle to
determine whether an augmenting path exists.

In the blossom algorithm, if an unmatched edge connects two

even nodes within the same alternating tree, a blossom cycle forms.

The entire cycle in the graph is then contracted into a single new

vertex. During contraction, all unmatched edges incident to nodes

within this cycle are redirected to this new vertex. At the next

recursion level, these unmatched edges are further checked to verify

if they can form an augmenting path. It is worth noting that the

new vertex is also an even node and remains in the same alternating

tree that the blossom nodes belonged to before contraction. The

blossom contraction allows more unmatched edges to be examined,

facilitating the discovery of a valid augmenting path.

In Figure 4, the blossom cycle in𝐺0 has been contracted to a new

vertex 6 in𝐺1. The algorithm then checks the unmatched edge (5, 6)
in 𝐺1 and identifies an augmenting path. However, the unmatched

edge (5, 6) in𝐺1 actually corresponds to the unmatched edge (5, 3)
in𝐺0. In Forest 3, this unmatched edge (5, 3) would not be checked
since node 3 is an odd node. Through blossom contraction, the

unmatched edge (5, 3) has been assigned to the new even node 6

as (5, 6), thereby enabling the detection of a new augmenting path.

3.3 Blossom Lifting
Insight 2: The essence of blossom lifting is to trace a valid path from
the unmatched-edge-connected node to the base, ensuring that the
restored path remains an augmenting path.

In a blossom cycle, the vertex connected to two unmatched in-

cycle edges is called the base, and each blossom has exactly one

base. When an augmenting path is found in the contracted graph,

the recursion returns, and the algorithm lifts the blossom cycle

to reconstruct the path in the original graph. The lifting process

involves selecting a valid alternating path within the blossom cycle,

from the unmatched-edge-connected-node to the base, ensuring

that when this path is appended, the reconstructed path is a valid

augmenting path in the original graph.

Augmenting Path in

lift

Valid Lifting Invalid Lifting

base base

Figure 5: The lifting process of blossom

Figure 5 illustrates the lifting process of the blossom cycle from

Figure 4. The base of the blossom cycle is 4 because it is the only

vertex with two unmatched in-cycle edges (4, 0) and (4, 3). In 𝐺1,

the unmatched edge connected to the contracted vertex 6 is (5, 6),
which corresponds to the edge (5, 3) before contraction. The lifting
process then traces a valid path from node 3 to the base 4. Since the

blossom is an odd-length cycle, there are two potential paths from

node 3 to the base: path (3, 2, 1, 0, 4) and path (3, 4). To ensure the

restored path remains an augmenting path, the path (3, 2, 1, 0, 4)
should be selected and appended after edge (5, 3), generating a

valid augmenting path (5, 3, 2, 1, 0, 4). If path (3, 4) is used instead,

the resulting path (5, 3, 4) would not qualify as an augmenting path.

We believe that it is only by understanding the underlying prin-
ciples of contraction and lifting that we can find the most efficient
way to parallelize the blossom algorithm. Unlike existing solu-
tions, this paper aims to develop an efficient and scalable parallel
framework that fundamentally addresses all three challenges.

4 RECURSION-FREE BLOSSOM ALGORITHM
In this section, we propose a sequential recursion-free blossom

algorithm which eliminates the recursive process of contracting

and lifting blossom cycles to first address Challenge #1. Before
presenting our algorithm, we introduce and prove several lemmas

that serve as its theoretical foundation.

4.1 Key Lemmas
Lemma 1. If there exists an augmenting path 𝑃 in graph 𝐺 , then 𝑃

must include an unmatched edge (𝑣,𝑤) connecting two even nodes, 𝑣
and𝑤 , from two distinct alternating trees.

Proof. Let 𝑃 = (𝑥, . . . , 𝑣,𝑤, . . . , 𝑦) be an augmenting path in 𝐺 ,

where 𝑥 and𝑦 are unmatched vertices. By definition, an augmenting

path is an alternating path whose start and end vertices are both

unmatched. Therefore, 𝑃 must begin and endwith unmatched edges,

and the number of edges in 𝑃 must be odd. Figure 6 illustrates such

a path 𝑃 . Let (𝑣,𝑤) be an arbitrary unmatched edge within 𝑃 .

path path

Figure 6: An augmenting path 𝑷 in graph 𝑮

Each time the blossom algorithm constructs the forest, every

unmatched vertex in𝐺 is treated as the root of a separate alternating

tree. Therefore, the start vertex 𝑥 and the end vertex 𝑦 must belong

to two distinct trees. The augmenting path 𝑃 consists of three

parts: the prefix (𝑥, . . . , 𝑣), the unmatched edge (𝑣,𝑤), and the suffix

(𝑤, . . . , 𝑦). The subpath (𝑥, . . . , 𝑣) is an alternating path that begins

with an unmatched edge and ends with a matched edge, having

even length. Therefore, the vertex 𝑣 must be an even node in the

alternating tree of 𝑥 . Similarly, the reverse of (𝑤, . . . , 𝑦) is also such
an alternating path with even length, and the vertex𝑤 must be an

even node in the alternating tree of 𝑦. Thus, Lemma 1 is proved.

□

Lemma 2. When a blossom is formed in an alternating tree, all odd
nodes within the blossom cycle may be treated as even nodes.

Proof. Let𝑇𝑥 be an alternating tree rooted at 𝑥 and suppose that

an arbitrary unmatched edge (𝑣,𝑤) connects two even nodes 𝑣 and

𝑤 in 𝑇𝑥 . An odd-length blossom cycle is thus formed. Let 𝑏 denote

the base of the blossom, and let the odd nodes along the branch

from 𝑏 to 𝑣 be labeled as 𝑘1, 𝑘2, . . . , 𝑘𝑛 and the odd nodes along

the branch from 𝑏 to𝑤 be labeled as 𝑙1, 𝑙2, . . . , 𝑙𝑚 , as illustrated in

Figure 7. Before the edge (𝑣,𝑤) is found, they are odd nodes because
the alternating path from 𝑥 to each of them is of odd length.

Even Node Odd Node

Figure 7: A blossom formed in a single alternating tree 𝑻𝒙

Consider a node 𝑘𝑖 . After the blossom is formed, the path from 𝑥

to 𝑘𝑖 can consist of three parts: the subpath (𝑥, . . . , 𝑏, 𝑙1, . . . , 𝑙𝑚,𝑤),
the unmatched edge (𝑤, 𝑣), and the subpath (𝑣, 𝑘𝑛, . . . , 𝑘𝑖). Since𝑤
is an even node, (𝑥, . . . , 𝑏, 𝑙1, . . . , 𝑙𝑚,𝑤) is an even-length alternating
path that ends with a matched edge. Appending the unmatched

edge (𝑤, 𝑣) turns it into an odd-length path that ends with the

unmatched edge. The remaining subpath (𝑣, 𝑘𝑛, . . . , 𝑘𝑖) is an odd-

length path that begins with a matched edge. Thus, the complete

path (𝑥, . . . , 𝑏, 𝑙1, . . . , 𝑙𝑚,𝑤, 𝑣, 𝑘𝑛, . . . , 𝑘𝑖) is an even-length alternat-

ing path, which is valid for building an augmenting path if 𝑘𝑖 is

connected to another even node from a different tree. As a result of

the blossom cycle, the odd node 𝑘𝑖 can be treated as an even node.

Similarly, for an odd node 𝑙 𝑗 , the alternating path from 𝑥 to 𝑙 𝑗 can

be (𝑥, . . . , 𝑏, 𝑘1, . . . , 𝑘𝑛, 𝑣,𝑤, 𝑙𝑚, . . . , 𝑙 𝑗), which is also an even-length

path and is valid for generating an augmenting path. Consequently,

𝑙 𝑗 can also be treated as an even node. Thus, Lemma 2 is proved.

□

4.2 Sequential Recursion-Free Algorithm
The two lemmas above reveal that, for a node in the alternating

tree, only the even-length path from the root to the node itself

is crucial for finding the augmenting path. This even-length path

begins at an unmatched vertex (the root) and alternates between

unmatched edges and matched edges. Two such paths connected by

one unmatched edge can generate an augmenting path. Therefore,

all even nodes in the alternating tree should be checked to verify if

there exists an unmatched edge that can form an augmenting path.

Based on these findings, we propose a new sequential recursion-

free blossom algorithm (Algorithm 2) that omits the entire recursive

process of blossom contraction and lifting. When a blossom cycle is

found in an alternating tree, instead of contracting the cycle and

lifting it later, the new algorithm converts all odd nodes within the

cycle to even nodes, stores their even-length paths from the root to

themselves, and adds them to the check set — without modifying

the graph and trees. If an unmatched edge connects one of these

even nodes to another even node from a different tree, the even-

length path will be read and utilized to build the valid augmenting

path. By doing this, the graph no longer requires transformation

and the recursion is completely removed, which resolves the es-

sential data dependencies within the blossom algorithm, thereby

addressing the key obstacle to enable parallel computation.

4.3 Correctness and Complexity
Theorem 1. For any graph, the sequential recursion-free blossom
algorithm correctly finds a maximum matching.

Proof. When the search procedure in the sequential recursion-

free algorithm executes, each unmatched vertex is initially regarded

as the root of an alternating tree, designated as an even node, and

inserted into a check set. The search procedure then examines

all unmatched edges incident to nodes in the check set for three

independent cases: forming an augmenting path, expanding the

alternating tree, or creating a blossom cycle.

When the tree expands, all newly introduced even nodes are

added to the check set. By Lemma 2, if a blossom forms, all odd

nodes within the blossom cycle are converted to even nodes and

inserted into the check set. Thus, the check set includes all vertices

that have an even-length alternating path to an unmatched vertex

and examines all unmatched edges incident to them.

By Lemma 1, an augmenting path must be formed by an un-

matched edge that connects two even nodes from different alter-

nating trees. If no such unmatched edge is found among all even

nodes, then no augmenting path exists in the graph, indicating

that the current matching is already a maximum matching. Hence,

Algorithm 2 The Sequential Recursion-Free Blossom Algorithm

Input: A graph𝐺
Output: A maximum matching𝑀
1: 𝑀 ← empty set

2: while True do ⊲ continue searching for augmenting paths until none remain

3: 𝑃 ← Recursion-Free-Find-Augmenting-Path(𝐺 ,𝑀)

4: if 𝑃 is empty then
5: break ⊲ no augmenting path found, so the matching is maximum

6: else
7: update𝑀 with the augmenting path 𝑃 ⊲ update the matching

8: end if
9: end while
10:

11: procedure Recursion-Free-Find-Augmenting-Path(𝐺 ,𝑀) ⊲ the search procedure

12: 𝐹 ← empty forest

13: 𝑁 ← empty set, 𝑁next ← empty set

14: for each unmatched vertex𝑢 do
15: add𝑢 as single-node tree to 𝐹 and add𝑢 to 𝑁
16: end for
17: while 𝑁 ≠ ∅ do
18: for each node 𝑣 in 𝑁 do
19: for each unmatched edge 𝑒 = (𝑣, 𝑤) in𝐺 do
20: if 𝑤 is an even node ∧ root(𝑣) ≠ root(𝑤) then ⊲ find an augmenting path

21: 𝑃1 ← Even-Path(𝑣, tree_𝑣, path_table)
22: 𝑃2 ← Even-Path(𝑤, tree_𝑤, path_table)

23: 𝑃 ← 𝑃1 + (𝑣, 𝑤) + the reverse of 𝑃2
24: return 𝑃
25: end if
26: if 𝑤 ∉ 𝐹 then ⊲ expand the tree

27: 𝑥 ← the vertex matched with 𝑤 in𝑀
28: add edges (𝑣, 𝑤) and (𝑤,𝑥) to tree_𝑣 and add 𝑥 to 𝑁next

29: end if
30: if 𝑤 is an even node ∧ root(𝑣) = root(𝑤) then ⊲ find a blossom

31: 𝐵 ← blossom formed by 𝑒 and edges on the path (𝑣, ..., 𝑤) in tree_𝑣
32: for each node 𝑖 in 𝐵 do
33: if 𝑖 is an odd node then
34: path_table[𝑖] ← the even-length path from root(𝑣) to 𝑖
35: set 𝑖 as an even node and add 𝑖 to 𝑁next

36: end if
37: end for
38: end if
39: end for
40: end for
41: 𝑁 ← 𝑁next

42: end while
43: return empty path

44: end procedure
45:

46: procedure Even-Path(𝑖 , tree_𝑖 , path_table)
47: if path_table[𝑖] is empty then ⊲ check if a valid path can be found in path table

48: return path(root(𝑖), ..., 𝑖) in tree_𝑖
49: else
50: return path_table[𝑖]
51: end if
52: end procedure

the sequential recursion-free blossom algorithm correctly finds a

maximum matching.

□

Theorem 2. The time complexity of the sequential recursion-free
blossom algorithm is 𝑂 (𝑉 2𝐸), where 𝑉 is the number of vertices and
𝐸 is the number of edges.

Proof. Since the size of the maximum matching is at most
𝑉
2
,

the search procedure will be called at most 𝑂 (𝑉) times. In each

invocation, the main while loop iterates over all unmatched edges

incident to even nodes, with at most 𝑂 (𝐸) edges to examine. For

each unmatched edge, there are three possible cases: if an augment-

ing path is found, tracing the path in the tree costs𝑂 (𝑉) time; if the

tree expands, adding two new edges requires constant time𝑂 (1); if a
blossom cycle is formed, converting all odd nodeswithin the cycle to

even nodes and recording their even-length paths takes 𝑂 (𝑉) time.

Thus, the time complexity of the sequential recursion-free blossom

algorithm is: 𝑂 (𝑉) ×𝑂 (𝐸) × (𝑂 (𝑉) +𝑂 (1) +𝑂 (𝑉)) = 𝑂 (𝑉 2𝐸).
□

While the time complexity remains unchanged, this sequential

recursion-free algorithm fundamentally resolves the inherent data

dependencies caused by sequential modifications of the graph. Fur-

thermore, it transforms the task of finding an augmenting path in

dynamic graphs into computation over a static graph, providing

significant benefits for parallel computing.

5 PARALLEL FRAMEWORK: X-BLOSSOM
Building on the sequential recursion-free algorithm proposed above,

we develop a parallel recursion-free blossom algorithm that is both

efficient and scalable to tackleChallenge #2. In addition, we discard
the use of alternating trees in the implementation to overcome

Challenge #3, as detailed in the final subsection.

5.1 Efficient Parallel Strategy
Challenge #2 arises from the inefficient search for augmenting paths

in the basic blossom algorithm. Each time the search procedure

runs, it returns at most one augmenting path, which means that

the size of matching can increase by only one. For large graphs

with millions of vertices, the procedure may need to be called

sequentially millions of times. If this structural issue is not properly

addressed, merely parallelizing the edge-checking stage will fail to

achieve satisfactory performance.

To resolve this difficulty, we propose a new parallel strategy that

concurrently identifies and returns multiple disjoint augmenting

paths in a single procedure call. During the update process, un-

matched edges in an augmenting path are flipped to matched, and

all matched edges are flipped to unmatched. Since disjoint paths

do not share any common vertex or edge, they can be processed

simultaneously to increase the matching size while keeping the

matching valid. Augmenting paths constructed from distinct pairs

of trees must be disjoint. Hence, our parallel strategy is to find as

many augmenting paths as possible by checking all unmatched

edges of even nodes in the forest in parallel, which dramatically

accelerates the process of finding the maximum matching.

Two Disjoint Augmenting PathsForest

update

Figure 8: Find multiple disjoint augmenting paths in parallel

Figure 8 shows the same graph 𝐺0 and matching𝑀0 as the first

row in Figure 4. Initially, the matching is empty, so the forest builds

six single-node trees rooted at unmatched vertices. All unmatched

edges incident to these even nodes can be checked in parallel, and

two disjoint paths are thus identified simultaneously: path (0, 1)
and path (2, 3). By using these two paths to increase the matching,

the size of𝑀0 grows directly by 2. To obtain the same matching, in

Figure 4, the search procedure in the basic blossom algorithm must

be called twice, and the forest and trees are rebuilt each time. Here,

these two paths are found in parallel and the forest is built only

once, which significantly improves the computational efficiency.

5.2 Parallel Recursion-Free Algorithm
Incorporating the strategy of computing disjoint augmenting paths

in parallel with the sequential recursion-free algorithm, we propose

a new parallel recursion-free blossom algorithm, as presented in

Algorithm 3. In the sequential algorithm, each unmatched edge

related to even nodes in alternating trees is processed individually

through three stages: finding an augmenting path, expanding the

tree, and detecting a blossom cycle. Since these three stages are

distinct and independent, we can reformulate the iteration loops.

For even nodes in the current check set, all unmatched edges inci-

dent to them are first examined in parallel to find multiple disjoint

augmenting paths. If any valid paths are found, the function returns

immediately. Next, these edges are checked concurrently for the

second case, and all newly introduced even nodes are inserted into

the new check set. Finally, they are verified in parallel to deter-

mine if they can form blossom cycles, which involves converting

other odd nodes to even nodes, storing their even-length paths, and

adding them to the new check set as well.

Algorithm 3 The Parallel Recursion-Free Blossom Algorithm

Input: A graph𝐺
Output: A maximum matching𝑀
1: 𝑀 ← empty set

2: while True do ⊲ continue searching for augmenting paths until none remain

3: 𝑃
total
← Parallel-Recursion-Free-Find-Augmenting-Path(𝐺 ,𝑀)

4: if 𝑃
total

is empty then
5: break ⊲ no augmenting path found, so the matching is maximum

6: else
7: update𝑀 with all augmenting paths in 𝑃

total
⊲ update the matching

8: end if
9: end while
10:

11: procedure Parallel-Recursion-Free-Find-Augmenting-Path(𝐺 ,𝑀) ⊲ the search procedure

12: 𝐹 ← empty forest

13: 𝑁 ← empty set, 𝑁next ← empty set

14: 𝑃
total
← empty set ⊲ A collection to store valid augmenting paths

15: parallel for each unmatched vertex𝑢 do
16: add𝑢 as single-node tree to 𝐹 and add𝑢 to 𝑁
17: end parallel for
18: while 𝑁 ≠ ∅ do
19: ⊲ find multiple disjoint augmenting paths in parallel

20: parallel for each node 𝑣 in 𝑁 and each unmatched edge 𝑒 = (𝑣, 𝑤) in𝐺 do
21: if 𝑤 is an even node ∧ root(𝑣) ≠ root(𝑤) then
22: 𝑃 ← Parallel-Disjoint-Augmenting-Path(𝑣, 𝑤, tree_𝑣, tree_𝑤, path_table)

23: add 𝑃 to 𝑃
total

24: end if
25: end parallel for
26: if 𝑃

total
≠ ∅ then

27: return 𝑃
total

28: end if
29:

30: ⊲ expand multiple trees in parallel and add new even nodes to 𝑁next

31: parallel for each node 𝑣 in 𝑁 and each unmatched edge 𝑒 = (𝑣, 𝑤) in𝐺 do
32: if 𝑤 ∉ 𝐹 then
33: Parallel-Expand-Tree(𝑣, 𝑤, tree_𝑣, path_table,𝑀 , 𝑁next)

34: end if
35: end parallel for
36:

37: ⊲ find blossom cycles in parallel and add new even nodes to 𝑁next

38: parallel for each node 𝑣 in 𝑁 and each unmatched edge 𝑒 = (𝑣, 𝑤) in𝐺 do
39: if 𝑤 is an even node ∧ root(𝑣) = root(𝑤) then
40: Parallel-Find-Blossom(𝑣, 𝑤, tree_𝑣, path_table, 𝑁next)

41: end if
42: end parallel for
43: 𝑁 ← 𝑁next

44: end while
45: return empty

46: end procedure

The advantages of this parallel recursion-free blossom algorithm

are evident from its significant reduction in computational over-

head. By finding multiple disjoint augmenting paths in parallel,

it not only expedites the process of examining unmatched edges

but, more importantly, leads to a substantial increase in matching

size. Moreover, since the algorithm eliminates recursion and avoids

repeatedly rebuilding the forest and trees, it remarkably lowers

both memory requirements and computation costs. Additionally,

the parallel processing pattern for checking all unmatched edges si-

multaneously enables massive computations and delivers dramatic

performance improvements for data-intensive applications with

large-scale graphs. Therefore, this efficient and scalable parallel

solution is the core of our parallel computation framework.

5.3 Lock-Free Synchronization
The parallel processing of all unmatched edges on even nodes

inevitably introduces the data race problem, where multiple threads

may concurrently access the same tree to expand branches, write

even-length paths to the same location in the path table, or construct

overlapping augmenting paths. This makes designing an effective

synchronization mechanism crucial for all three checking stages.

Theorem 3. An alternating tree in the forest can only be used to
construct at most one augmenting path.

Two augmenting paths: path and path

Figure 9: Two augmenting paths: one constructed between
𝑻𝒙 and 𝑻𝒚 , and the other between 𝑻𝒙 and 𝑻𝒛

Proof. Let𝑇𝑥 ,𝑇𝑦 , and𝑇𝑧 denote three distinct alternating trees

rooted at 𝑥 , 𝑦, and 𝑧, respectively. Assume two augmenting paths

are formed using tree 𝑇𝑥 : one between 𝑇𝑥 and 𝑇𝑦 , and the other

between𝑇𝑥 and𝑇𝑧 , as shown in Figure 9. Both paths must share the

same endpoint 𝑥 since they are constructed from the same tree 𝑇𝑥 .

Let the merging vertex of these two paths be denoted as 𝑝 . If these

two augmenting paths are used together to update thematching, the

two unmatched edges (𝑝, 𝑞1) and (𝑝, 𝑞2) will be flipped to matched

edges, which implies that 𝑝 is matched with both 𝑞1 and 𝑞2, leading

to an invalid matching. This contradiction completes the proof.

□

According to Theorem 3, when the parallel recursion-free algo-

rithm runs, each alternating tree can only be paired with other trees

once. All threads should identify as many distinct pairs as possible

to maximize the number of valid paths returned. Each tree can

maintain its own atomic attribute to facilitate this process. When

an unmatched edge connects two even nodes from different trees,

a thread will attempt to use atomic Compare-And-Swap (CAS) op-

erations to modify the attributes of these two trees and gain access

to them. If either tree has already been accessed by another thread,

the thread will revert any changes it made to the attributes, thereby

ensuring all paths are disjoint and preserving the correctness. The

procedure of finding paths in parallel is detailed in Algorithm 4.

The synchronization method above is lock-free and efficient. If

one thread gains access to the first tree 𝑣 , but the second tree𝑤 is

being accessed by another thread (meaning that tree𝑤 is currently

being used to establish another augmenting path), then the atomic

Algorithm 4 Compute Multiple Augmenting Paths in Parallel

1: select_tree[]← array of atomic elements initialized to 0 ⊲ store atomic attributes for trees

2: procedure Parallel-Disjoint-Augmenting-Path(𝑣, 𝑤, tree_𝑣, tree_𝑤, path_table)

3: ⊲ atomicCAS returns the value that exists prior to the swap

4: if atomicCAS(select_tree[tree_𝑣], 0, 1) = 0 then
5: if atomicCAS(select_tree[tree_𝑤], 0, 1) = 0 then
6: 𝑃1 ← Even-Path(𝑣, tree_𝑣, path_table)
7: 𝑃2 ← Even-Path(𝑤, tree_𝑤, path_table)

8: 𝑃 ← 𝑃1 + (𝑣, 𝑤) + the reverse of 𝑃2
9: return 𝑃
10: else
11: atomicCAS(select_tree[tree_𝑣], 1, 0)
12: end if
13: end if
14: return empty path

15: end procedure

attribute of tree 𝑣 will be restored to its original value. This ensures

that if other threads later require tree 𝑣 to build an augmenting path,

it remains accessible. No thread needs to wait for others, although

very few paths may be missed due to access contention. Since the

search procedure is called repeatedly until no augmenting path

exists, any missed path will certainly be discovered in subsequent

searches. By doing so, this lock-free approach maximizes the num-

ber of disjoint paths without blocking any thread, resulting in more

efficient parallel processing and improved scalability.

Data races also occur when expanding trees in parallel. If there

are two nodes 𝑣1 and 𝑣2 from different trees that satisfy the con-

dition to expand the same matched edge (𝑤, 𝑥), only one of them

can add it. In the parallel algorithm, we can still use a lock-free

method to resolve this conflict, as depicted in the first procedure in

Algorithm 5. It does not matter which tree expands the edges, as

long as the edges are added to the forest. The purpose of expanding

is to introduce a new even node 𝑥 for later checking. Placing 𝑥

in different trees only generates different even-length paths. All

even-length paths are functionally equivalent for building an aug-

menting path, because no matter the length of the augmenting path,

it can only increase the matching size by one.

Algorithm 5 Expanding Trees and Finding Blossoms in Parallel

1: select_edge[]← array of atomic elements initialized to 0 ⊲ attributes for matched edges

2: procedure Parallel-Expand-Tree(𝑣, 𝑤, tree_𝑣, path_table,𝑀 , 𝑁next)

3: 𝑥 ← the vertex matched with 𝑤 in𝑀
4: 𝑖 ← Min(𝑤, 𝑥) ⊲ the matched edge (𝑣, 𝑤) can be indexed by one number

5: if atomicCAS(select_edge[𝑖], 0, 1) = 0 then
6: add edges (𝑣, 𝑤) and (𝑤,𝑥) to tree_𝑣 and add 𝑥 to 𝑁next

7: end if
8: end procedure
9:

10: select_odd_node[]← array of atomic elements initialized to 0 ⊲ attributes for odd nodes

11: procedure Parallel-Find-Blossom(𝑣, 𝑤, tree_𝑣, path_table, 𝑁next)

12: 𝐵 ← blossom formed by (𝑣, 𝑤) and edges on the path (𝑣, ..., 𝑤) in tree_𝑣
13: for each node 𝑘 in 𝐵 do
14: if 𝑘 is an odd node ∧ atomicCAS(select_odd_node[𝑘], 0, 1) = 0 then
15: path_table[𝑘] ← the even-length path from root(𝑣) to 𝑘
16: set 𝑘 as an even node and add 𝑘 to 𝑁next

17: end if
18: end for
19: end procedure

In the third stage, when checking all unmatched edges in parallel

to find blossoms, an odd node 𝑘 may be contained in different blos-

soms. In this case, the node 𝑘 should be treated as a new even node,

and it may have multiple valid even-length paths corresponding to

different blossom structures. Only one even-length path needs to be

stored in the path table, as all such paths are equivalent for finding

an augmenting path. Therefore, we also design a lock-free parallel

approach as presented in the second procedure in Algorithm 5.

The work complexity of the parallel recursion-free algorithm

is 𝑂 (𝑉 2𝐸), which is equivalent to that of the sequential recursion-

free version because it does not involve additional operations with

higher time complexity. Assuming the number of processors is 𝑝 and

the cost of an atomic CAS operation is 𝑐 , the atomic operation cost

when finding augmenting paths is 𝑉 × 𝑐 , the cost when expanding

trees is 𝐸 ×𝑐 , and the cost when finding blossoms is𝑉 ×𝑐 . Thus, the
parallel time complexity on 𝑝 processors is 𝑂 (𝑉 2𝐸

𝑝 + (2𝑉 + 𝐸) × 𝑐).

5.4 Discarding Alternating Tree
Challenge #3 highlights that when the blossom algorithm runs, the

dynamic data structures, graphs and trees, are frequently modi-

fied. By removing the contraction and lifting processes, we have

eliminated dynamic modifications to the graph, transforming the

problem into one over a static graph. However, alternating trees are

still continuously being accessed and expanded during computation.

Building an augmenting path requires tracing the path from the root

to the even node using breadth-first search, which introduces signif-

icant overheads, particularly for large trees. Furthermore, building

and deconstructing these trees incurs extra system costs and results

in irregular memory access. Hence, overcoming this challenge is

also essential for implementing a practical parallel framework.

Inspired by the path table used to record even-length paths for

odd nodes within the blossom, we develop an efficient implementa-

tion method that removes the necessity of constructing alternating

trees. Only even-length alternating paths that start from the un-

matched vertex are valid and useful for finding augmenting paths.

Hence, instead of building alternating trees, our path table can

record the valid even-length alternating path for every even node

in the forest, regardless of whether it belongs to a blossom or not.

To make it more memory-efficient, for each newly expanded even

node, the path table only needs to record the path from its preceding

even node to itself. And for each odd node within a blossom, the

path table records the even-length path from the base to itself. By

doing this, we can easily trace the even-length alternating path for

any even node by simply looking up the path table, eliminating the

need to establish trees and reducing the tracing cost of constructing

an augmenting path.

Forest

Index Path

0 (4,3,2,1,0)
1
2
3
4

5

(4,0,1,2,3)
(4,3,2)
(4,0,1)

Index Path

0
1
2
3
4
5

(4,3,2)
(4,0,1)

Index Path

0
1
2
3
4
5

Path Table

Figure 10: Only use path table to trace path

Figure 10 illustrates the same example as shown in the third

row of Figure 4. In the basic blossom algorithm, two alternating

trees rooted at the unmatched vertices 4 and 5 are constructed.

Both 4 and 5 are even nodes without any preceding even node, so

their paths do not need to be recorded. Next, the tree rooted at

node 4 expands two branches, generating two new even nodes 1

and 2. The path from 4 to 1 is (4, 0, 1), and the path from 4 to 2

is (4, 3, 2). Therefore, these two paths are stored in the path table,

indicating the even-length paths from the preceding even node to

the current even node. Subsequently, the unmatched edge (1, 2) is
found, forming a blossom cycle. As a result, two odd nodes 0 and 3

are regarded as even nodes. Their even-length paths starting from

the base are (4, 3, 2, 1, 0) and (4, 0, 1, 2, 3). Since node 3 becomes an

even node and the unmatched edge (3, 5) connects two even nodes

from different trees, an augmenting path is identified. The path

for node 5 in the table is empty, indicating that it is a root. The

path for node 3 in the table is (4, 0, 1, 2, 3), and node 4 is also a root.

Appending the edge (3, 5) to the path (4, 0, 1, 2, 3) generates the
augmenting path (4, 0, 1, 2, 3, 5).

6 PERFORMANCE EVALUATION
6.1 Evaluation Platform Settings
6.1.1 Baselines. We have deployed the blossom algorithm from

the widely recognized open-source C++ Boost Graph Library [17]

as a sequential baseline. Additionally, we have utilized the imple-

mentation provided by the LEMON library [28], a well-known

high-performance C++ library with highly tuned optimizations spe-

cialized for the blossom algorithm, as another strong and credible

sequential baseline. To fairly compare the parallel performance,

we have also deployed the most recently published parallel blos-

som implementation called Par-EB [87]. We have implemented our

X-Blossom framework on multi-core platforms and evaluated the

performance of all these implementations across various datasets.

6.1.2 Experimental Environment. All implementations are evalu-

ated on a server with dual AMD EPYC 7643 processors (96 cores in

total) and 256 GB of RAM. The latest versions of the Boost Graph

Library (1.87.0) and the LEMON library (1.3.1) are used. All code is

compiled using 𝑂3 optimizations, and the gcc version is 9.4.0.

6.1.3 Datasets. We have evaluated all implementations using both

real-world datasets and synthetic datasets. A diverse collection

of real-world graph datasets from the SNAP database [61] have

been summarized in Table 1, which includes four main categories:

social graphs (Twitter, Google, Twitch, YouTube, LiveJournal), eco-

nomic networks (Amazon, CryptoTrans), communication graphs

(HiggsNet, Wikipedia, StackOverflow), and reference networks (Hy-

perlink, Patent). These datasets span various domains and exhibit a

wide range of vertex and edge sizes, providing a comprehensive and

representative evaluation of performance under different scenarios.

Table 1: Statistics of real-world graphs
Graph |𝑉 | |𝐸 | Description
Twitter [62] 81,306 1,342,296 Social network of Twitter users

Google [62] 107,614 12,238,285 Social network of Google users

Twitch [83] 168,114 6,797,557 Social network of Twitch gamers

Amazon [58] 334,863 925,872 Product co-purchasing network on Amazon

HiggsNet [26] 456,626 12,508,413 Communications graph of the Higgs boson

CryptoTrans [88] 781,896 2,674,043 Transactions network of six cryptocurrencies

YouTube [111] 1,134,890 2,987,624 Social network of YouTube users

Hyperlink [55] 1,791,489 25,444,207 Web graph of hyperlinks

Wikipedia [59] 2,394,385 4,659,565 Communications graph on Wikipedia

StackOverflow [61] 2,601,977 28,183,518 Communications graph on Stack Overflow

Patent [60] 3,774,768 16,518,947 Citation graph of U.S. patents

LiveJournal [61] 4,847,571 42,851,237 Social network of LiveJournal users

REFERENCES
[1] Ehab Abdelhamid, Ibrahim Abdelaziz, Panos Kalnis, Zuhair Khayyat, and Fuad

Jamour. 2016. ScaleMine: Scalable Parallel Frequent Subgraph Mining in a

Single Large Graph. In SC ’16: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. 716–727. https:

//doi.org/10.1109/SC.2016.60

[2] Faisal N. Abu-Khzam, Shouwei Li, ChristineMarkarian, FriedhelmMeyer auf der

Heide, and Pavel Podlipyan. 2019. Efficient parallel algorithms for parameterized

problems. Theor. Comput. Sci. 786, C (Sept. 2019), 2–12. https://doi.org/10.1016/

j.tcs.2018.11.006

[3] Navid Aghdaie, John Kolen, Mohamed Marwan Mattar, Mohsen Sardari, Su

Xue, and Kazi Atif-Uz Zaman. 2018. Multiplayer video game matchmaking

optimization. US Patent 9,993,735.

[4] Naheed Anjum Arafat, Arijit Khan, Arpit Kumar Rai, and Bishwamittra Ghosh.

2023. Neighborhood-Based Hypergraph Core Decomposition. Proc. VLDB
Endow. 16, 9 (May 2023), 2061–2074. https://doi.org/10.14778/3598581.3598582

[5] Ariful Azad, Aydın Buluç, and Alex Pothen. 2017. Computing Maximum Car-

dinality Matchings in Parallel on Bipartite Graphs via Tree-Grafting. IEEE
Transactions on Parallel and Distributed Systems 28, 1 (2017), 44–59. https:

//doi.org/10.1109/TPDS.2016.2546258

[6] Ariful Azad, Aydın Buluç, and Alex Pothen. 2017. Computing Maximum Car-

dinality Matchings in Parallel on Bipartite Graphs via Tree-Grafting. IEEE
Transactions on Parallel and Distributed Systems 28, 1 (2017), 44–59. https:

//doi.org/10.1109/TPDS.2016.2546258

[7] Ariful Azad, Mahantesh Halappanavar, Sivasankaran Rajamanickam, Erik G.

Boman, Arif Khan, and Alex Pothen. 2012. Multithreaded Algorithms for

Maximum Matching in Bipartite Graphs. In 2012 IEEE 26th International Parallel
and Distributed Processing Symposium. 860–872. https://doi.org/10.1109/IPDPS.

2012.82

[8] Michel L Balinski. 1967. Labelling to obtain a maximum matching. In Combi-
natorial Mathematics and Its Applications (Proceedings Conference Chapel Hill,
North Carolina. 585–602.

[9] Claude Berge. 1957. Two Theorems in Graph Theory. Proceedings of the National
Academy of Sciences 43, 9 (1957), 842–844. https://doi.org/10.1073/pnas.43.9.842

[10] Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. 2015. De-

terministic fully dynamic data structures for vertex cover and matching. In

Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Al-
gorithms (San Diego, California) (SODA ’15). Society for Industrial and Applied

Mathematics, USA, 785–804.

[11] Guy E. Blelloch, Jeremy T. Fineman, and Julian Shun. 2012. Greedy sequential

maximal independent set and matching are parallel on average. In Proceedings
of the Twenty-Fourth Annual ACM Symposium on Parallelism in Algorithms
and Architectures (Pittsburgh, Pennsylvania, USA) (SPAA ’12). Association for

Computing Machinery, New York, NY, USA, 308–317. https://doi.org/10.1145/

2312005.2312058

[12] Francis Bloch, Bhaskar Dutta, and Mihai Manea. 2019. Efficient partnership

formation in networks. Theoretical Economics 14, 3 (2019), 779–811. https:

//doi.org/10.3982/TE3453

[13] Norbert Blum. 1990. A new approach to maximum matching in general graphs.

In Automata, Languages and Programming, Michael S. Paterson (Ed.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 586–597.

[14] Norbert Blum. 2015. Maximum Matching in General Graphs Without Explicit

Consideration of Blossoms Revisited. arXiv:1509.04927 [cs.DS] https://arxiv.

org/abs/1509.04927

[15] Béla Bollobás. 2001. Random Graphs. Cambridge University Press, Chapter 2.4.

Random Regular Graphs.

[16] Angela Bonifati, M. Tamer Özsu, Yuanyuan Tian, Hannes Voigt, Wenyuan Yu,

and Wenjie Zhang. 2024. The Future of Graph Analytics. In Companion of
the 2024 International Conference on Management of Data (Santiago AA, Chile)

(SIGMOD/PODS ’24). Association for Computing Machinery, New York, NY,

USA, 544–545. https://doi.org/10.1145/3626246.3658369

[17] Boost.org. 2024. The Boost Graph Library. https://www.boost.org/doc/libs/1_

87_0/libs/graph/doc/maximum_matching.html. Accessed: 2025-01-18.

[18] Shuangyu Cai, Boyu Tian, Huanchen Zhang, and Mingyu Gao. 2024. PimPam:

Efficient Graph Pattern Matching on Real Processing-in-Memory Hardware. 2,

3, Article 161 (May 2024), 25 pages. https://doi.org/10.1145/3654964

[19] Hongtai Cao, Qihao Wang, Xiaodong Li, Matin Najafi, Kevin Chen–Chuan

Chang, and Reynold Cheng. 2024. Large Subgraph Matching: A Compre-

hensive and Efficient Approach for Heterogeneous Graphs. In 2024 IEEE
40th International Conference on Data Engineering (ICDE). 2972–2985. https:

//doi.org/10.1109/ICDE60146.2024.00231

[20] Matteo Ceccarello, Carlo Fantozzi, Andrea Pietracaprina, Geppino Pucci, and

Fabio Vandin. 2017. Clustering uncertain graphs. Proc. VLDB Endow. 11, 4 (Dec.
2017), 472–484. https://doi.org/10.1145/3186728.3164143

[21] Xuhao Chen, Roshan Dathathri, Gurbinder Gill, and Keshav Pingali. 2020. Pan-

golin: an efficient and flexible graph mining system on CPU and GPU. Proc.
VLDB Endow. 13, 8 (April 2020), 1190–1205. https://doi.org/10.14778/3389133.

3389137

[22] Xin Chen, Jieming Shi, You Peng, Wenqing Lin, Sibo Wang, and Wenjie Zhang.

2024. Minimum Strongly Connected Subgraph Collection in Dynamic Graphs.

Proc. VLDB Endow. 17, 6 (Feb. 2024), 1324–1336. https://doi.org/10.14778/

3648160.3648173

[23] Theodoros Chondrogiannis, Panagiotis Bouros, Johann Gamper, Ulf Leser, and

David B. Blumenthal. 2020. Finding k-shortest paths with limited overlap. The
VLDB Journal 29, 5 (2020), 1023–1047. https://doi.org/10.1007/s00778-020-

00604-x

[24] Wikipedia contributors. 2025. Sparse matrix. https://en.wikipedia.org/wiki/

Sparse_matrix. Accessed: 2025-01-19.

[25] Margarida Corominas-Bosch. 2004. Bargaining in a network of buyers and

sellers. Journal of Economic Theory 115, 1 (2004), 35–77. https://doi.org/10.

1016/S0022-0531(03)00110-8

[26] M. De Domenico, A. Lima, P. Mougel, and M. Musolesi. 2013. The Anatomy of

a Scientific Rumor. Scientific Reports 3, 1 (2013), 2980. https://doi.org/10.1038/

srep02980

[27] Mehmet Deveci, Kamer Kaya, Bora Ucar, and Umit V. Catalyurek. 2013. GPU

accelerated maximum cardinality matching algorithms for bipartite graphs.

arXiv:1303.1379 [cs.DC] https://arxiv.org/abs/1303.1379

[28] Balázs Dezső, Alpár Jüttner, and Péter Kovács. 2011. LEMON – an Open Source

C++ Graph Template Library. Electronic Notes in Theoretical Computer Science
264, 5 (2011), 23–45. https://doi.org/10.1016/j.entcs.2011.06.003 Proceedings of

the Second Workshop on Generative Technologies (WGT) 2010.

[29] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2021. Theoretically Effi-

cient Parallel Graph Algorithms Can Be Fast and Scalable. ACM Trans. Parallel
Comput. 8, 1, Article 4 (April 2021), 70 pages. https://doi.org/10.1145/3434393

[30] Loc Do, Hady W. Lauw, and Ke Wang. 2015. Mining revenue-maximizing

bundling configuration. Proc. VLDB Endow. 8, 5 (Jan. 2015), 593–604. https:

//doi.org/10.14778/2735479.2735491

[31] Gabriel Cristian Dragomir-Loga and Marius Pop. 2021. Blossom Algorithm

Analysis in a Medical Emergency Management System. In 2021 International
Conference on e-Health and Bioengineering (EHB). 1–4. https://doi.org/10.1109/

EHB52898.2021.9657586

[32] Jack Edmonds. 1965. Maximum matching and a polyhedron with 0,1-vertices.

Journal of Research of the National Bureau of Standards Section BMathematics and
Mathematical Physics (1965), 125. https://api.semanticscholar.org/CorpusID:

15379135

[33] Jack Edmonds. 1965. Paths, trees, and flowers. Canadian Journal of mathematics
17 (1965), 449–467.

[34] Yuval Emek, Shay Kutten, and Roger Wattenhofer. 2016. Online matching:

haste makes waste!. In Proceedings of the Forty-Eighth Annual ACM Symposium
on Theory of Computing (Cambridge, MA, USA) (STOC ’16). Association for

Computing Machinery, New York, NY, USA, 333–344. https://doi.org/10.1145/

2897518.2897557

[35] S. Even and O. Kariv. 1975. An𝑂 (𝑛2.5) algorithm for maximum matching in

general graphs. In 16th Annual Symposium on Foundations of Computer Science
(sfcs 1975). 100–112. https://doi.org/10.1109/SFCS.1975.5

[36] Yixiang Fang, Zhongran Wang, Reynold Cheng, Hongzhi Wang, and Jiafeng Hu.

2019. Effective and Efficient Community Search Over Large Directed Graphs.

IEEE Transactions on Knowledge and Data Engineering 31, 11 (2019), 2093–2107.

https://doi.org/10.1109/TKDE.2018.2872982

[37] Harold N. Gabow. 1976. An Efficient Implementation of Edmonds’ Algorithm

for Maximum Matching on Graphs. J. ACM 23, 2 (April 1976), 221–234. https:

//doi.org/10.1145/321941.321942

[38] Harold N. Gabow. 1990. Data structures for weighted matching and nearest

common ancestors with linking. In Proceedings of the First Annual ACM-SIAM
Symposium on Discrete Algorithms (San Francisco, California, USA) (SODA ’90).
Society for Industrial and Applied Mathematics, USA, 434–443.

[39] Harold N. Gabow, Zvi Galil, and Thomas H. Spencer. 1989. Efficient implemen-

tation of graph algorithms using contraction. J. ACM 36, 3 (July 1989), 540–572.

https://doi.org/10.1145/65950.65954

[40] Harold N. Gabow and Robert E. Tarjan. 1991. Faster Scaling Algorithms for

General Graph Matching Problems. J. ACM 38, 4 (Oct. 1991), 815–853. https:

//doi.org/10.1145/115234.115366

[41] Zvi Galil. 1986. Efficient algorithms for finding maximum matching in graphs.

ACMComput. Surv. 18, 1 (March 1986), 23–38. https://doi.org/10.1145/6462.6502

[42] Zvi Galil, Silvio Micali, and Harold Gabow. 1986. An 𝑂 (𝐸𝑉𝑙𝑜𝑔𝑉) Al-

gorithm for Finding a Maximal Weighted Matching in General Graphs.

SIAM J. Comput. 15, 1 (1986), 120–130. https://doi.org/10.1137/0215009

arXiv:https://doi.org/10.1137/0215009

[43] Zengyang Gong, Yuxiang Zeng, and Lei Chen. 2024. Real-Time Insertion Opera-

tor for Shared Mobility on Time-Dependent Road Networks. Proc. VLDB Endow.
17, 7 (March 2024), 1669–1682. https://doi.org/10.14778/3654621.3654633

[44] Jiabao Han and Hongzhi Wang. 2021. Graph matching based reasoner: A

symbolic approach to question answering. Engineering Applications of Artificial
Intelligence 105 (2021), 104425. https://doi.org/10.1016/j.engappai.2021.104425

[45] Jiawei He, Zehao Huang, Naiyan Wang, and Zhaoxiang Zhang. 2021. Learnable

GraphMatching: Incorporating Graph PartitioningWith Deep Feature Learning

https://doi.org/10.1109/SC.2016.60
https://doi.org/10.1109/SC.2016.60
https://doi.org/10.1016/j.tcs.2018.11.006
https://doi.org/10.1016/j.tcs.2018.11.006
https://doi.org/10.14778/3598581.3598582
https://doi.org/10.1109/TPDS.2016.2546258
https://doi.org/10.1109/TPDS.2016.2546258
https://doi.org/10.1109/TPDS.2016.2546258
https://doi.org/10.1109/TPDS.2016.2546258
https://doi.org/10.1109/IPDPS.2012.82
https://doi.org/10.1109/IPDPS.2012.82
https://doi.org/10.1073/pnas.43.9.842
https://doi.org/10.1145/2312005.2312058
https://doi.org/10.1145/2312005.2312058
https://doi.org/10.3982/TE3453
https://doi.org/10.3982/TE3453
https://arxiv.org/abs/1509.04927
https://arxiv.org/abs/1509.04927
https://arxiv.org/abs/1509.04927
https://doi.org/10.1145/3626246.3658369
https://www.boost.org/doc/libs/1_87_0/libs/graph/doc/maximum_matching.html
https://www.boost.org/doc/libs/1_87_0/libs/graph/doc/maximum_matching.html
https://doi.org/10.1145/3654964
https://doi.org/10.1109/ICDE60146.2024.00231
https://doi.org/10.1109/ICDE60146.2024.00231
https://doi.org/10.1145/3186728.3164143
https://doi.org/10.14778/3389133.3389137
https://doi.org/10.14778/3389133.3389137
https://doi.org/10.14778/3648160.3648173
https://doi.org/10.14778/3648160.3648173
https://doi.org/10.1007/s00778-020-00604-x
https://doi.org/10.1007/s00778-020-00604-x
https://en.wikipedia.org/wiki/Sparse_matrix
https://en.wikipedia.org/wiki/Sparse_matrix
https://doi.org/10.1016/S0022-0531(03)00110-8
https://doi.org/10.1016/S0022-0531(03)00110-8
https://doi.org/10.1038/srep02980
https://doi.org/10.1038/srep02980
https://arxiv.org/abs/1303.1379
https://arxiv.org/abs/1303.1379
https://doi.org/10.1016/j.entcs.2011.06.003
https://doi.org/10.1145/3434393
https://doi.org/10.14778/2735479.2735491
https://doi.org/10.14778/2735479.2735491
https://doi.org/10.1109/EHB52898.2021.9657586
https://doi.org/10.1109/EHB52898.2021.9657586
https://api.semanticscholar.org/CorpusID:15379135
https://api.semanticscholar.org/CorpusID:15379135
https://doi.org/10.1145/2897518.2897557
https://doi.org/10.1145/2897518.2897557
https://doi.org/10.1109/SFCS.1975.5
https://doi.org/10.1109/TKDE.2018.2872982
https://doi.org/10.1145/321941.321942
https://doi.org/10.1145/321941.321942
https://doi.org/10.1145/65950.65954
https://doi.org/10.1145/115234.115366
https://doi.org/10.1145/115234.115366
https://doi.org/10.1145/6462.6502
https://doi.org/10.1137/0215009
https://arxiv.org/abs/https://doi.org/10.1137/0215009
https://doi.org/10.14778/3654621.3654633
https://doi.org/10.1016/j.engappai.2021.104425

for Multiple Object Tracking. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 5299–5309.

[46] Oscar Higgott. 2022. PyMatching: A Python Package for Decoding Quantum

Codes with Minimum-Weight Perfect Matching. ACM Transactions on Quantum
Computing 3, 3, Article 16 (June 2022), 16 pages. https://doi.org/10.1145/3505637

[47] Oscar Higgott and Craig Gidney. 2023. Sparse Blossom: correcting a million er-

rors per core second with minimum-weight matching. arXiv:2303.15933 [quant-

ph] https://arxiv.org/abs/2303.15933

[48] John E. Hopcroft and Richard M. Karp. 1973. An 𝑛5/2
Algorithm for Maximum

Matchings in Bipartite Graphs. SIAM J. Comput. 2, 4 (1973), 225–231. https:

//doi.org/10.1137/0202019

[49] Lin Hu, Yinnian Lin, Lei Zou, and M. Tamer Özsu. 2024. A graph pattern

mining framework for large graphs on GPU. The VLDB Journal 34, 1 (2024), 6.
https://doi.org/10.1007/s00778-024-00883-8

[50] Amos Israeli and A. Itai. 1986. A fast and simple randomized parallel algorithm

for maximal matching. Inform. Process. Lett. 22, 2 (1986), 77–80. https://doi.

org/10.1016/0020-0190(86)90144-4

[51] Taisuke Izumi, Naoki Kitamura, and Yutaro Yamaguchi. 2024. A Nearly

Linear-Time Distributed Algorithm for Exact Maximum Matching. In Pro-
ceedings of the 2024 ACM-SIAM Symposium on Discrete Algorithms, SODA
2024, Alexandria, VA, USA, January 7-10, 2024. SIAM, 4062–4082. https:

//doi.org/10.1137/1.9781611977912.141

[52] Xun Jian, Zhiyuan Li, and Lei Chen. 2023. SUFF: Accelerating Subgraph Match-

ing with Historical Data. Proc. VLDB Endow. 16, 7 (March 2023), 1699–1711.

https://doi.org/10.14778/3587136.3587144

[53] Marek Karpinski and Wojciech Rytter. 1998. Fast Parallel Algorithms for Graph
Matching Problems. Oxford University Press. https://doi.org/10.1093/oso/

9780198501626.001.0001

[54] Naoki Kitamura and Taisuke Izumi. 2022. A subquadratic-time distributed

algorithm for exact maximum matching. IEICE Transactions on Information and
Systems 105, 3 (2022), 634–645.

[55] Christine Klymko, David Gleich, and Tamara G. Kolda. 2014. Using Triangles to

Improve Community Detection in Directed Networks. arXiv:1404.5874 [cs.SI]

https://arxiv.org/abs/1404.5874

[56] Vladimir Kolmogorov. 2009. Blossom V: a new implementation of a minimum

cost perfect matching algorithm. Mathematical Programming Computation 1, 1

(2009), 43–67. https://doi.org/10.1007/s12532-009-0002-8

[57] Harold W Kuhn. 1955. The Hungarian method for the assignment problem.

Naval research logistics quarterly 2, 1-2 (1955), 83–97.

[58] Jure Leskovec, Lada A. Adamic, and Bernardo A. Huberman. 2007. The dynamics

of viral marketing. ACM Trans. Web 1, 1 (May 2007), 5–es. https://doi.org/10.

1145/1232722.1232727

[59] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. 2010. Predicting positive

and negative links in online social networks. In Proceedings of the 19th Interna-
tional Conference on World Wide Web (Raleigh, North Carolina, USA) (WWW
’10). Association for Computing Machinery, New York, NY, USA, 641–650.

https://doi.org/10.1145/1772690.1772756

[60] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2005. Graphs over time:

densification laws, shrinking diameters and possible explanations. In Proceedings
of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery
in Data Mining (Chicago, Illinois, USA) (KDD ’05). Association for Computing

Machinery, New York, NY, USA, 177–187. https://doi.org/10.1145/1081870.

1081893

[61] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data. Accessed: 2025-01-19.

[62] Jure Leskovec and Julian Mcauley. 2012. Learning to Discover Social Cir-

cles in Ego Networks. In Advances in Neural Information Processing Systems,
F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger (Eds.), Vol. 25. Curran

Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2012/file/

7a614fd06c325499f1680b9896beedeb-Paper.pdf

[63] Jia Li, Wenyue Zhao, Nikos Ntarmos, Yang Cao, and Peter Buneman. 2023.

MITra: A Framework for Multi-Instance Graph Traversal. Proc. VLDB Endow.
16, 10 (June 2023), 2551–2564. https://doi.org/10.14778/3603581.3603594

[64] Siyu Li, Zhiwei Zhang, Meihui Zhang, Ye Yuan, and Guoren Wang. 2024.

Authenticated Subgraph Matching in Hybrid-Storage Blockchains. In 2024
IEEE 40th International Conference on Data Engineering (ICDE). 1986–1998.
https://doi.org/10.1109/ICDE60146.2024.00159

[65] Wuyang Li, Xinyu Liu, and Yixuan Yuan. 2022. SIGMA: Semantic-Complete

Graph Matching for Domain Adaptive Object Detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 5291–
5300.

[66] Yuchen Li, Dongxiang Zhang, and Kian-Lee Tan. 2015. Real-time targeted

influence maximization for online advertisements. Proc. VLDB Endow. 8, 10
(June 2015), 1070–1081. https://doi.org/10.14778/2794367.2794376

[67] Qing Liu, Xuankun Liao, Xin Huang, Jianliang Xu, and Yunjun Gao. 2023.

Distributed (,)-Core Decomposition over Bipartite Graphs. In 2023 IEEE 39th
International Conference on Data Engineering (ICDE). 909–921. https://doi.org/

10.1109/ICDE55515.2023.00075

[68] Cheng Long, Raymond Chi-Wing Wong, Philip S. Yu, and Minhao Jiang. 2013.

On optimal worst-case matching. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data (New York, New York, USA)

(SIGMOD ’13). Association for Computing Machinery, New York, NY, USA,

845–856. https://doi.org/10.1145/2463676.2465321

[69] Bo Lu, Robert Greevy, Xiaochun Xu, and Curt Beck. 2011. Optimal Nonbipartite

Matching and Its Statistical Applications. The American Statistician 65, 1 (2011),

21–30. https://doi.org/10.1198/tast.2011.08294

[70] Lingkai Meng, Yu Shao, Long Yuan, Longbin Lai, Peng Cheng, Xue Li, Wenyuan

Yu, Wenjie Zhang, Xuemin Lin, and Jingren Zhou. 2024. A Survey of Distributed

Graph Algorithms on Massive Graphs. ACM Comput. Surv. 57, 2, Article 27
(Oct. 2024), 39 pages. https://doi.org/10.1145/3694966

[71] Panayotis Mertikopoulos, Heinrich H. Nax, and Bary S.R. Pradelski. 2024. Quick

or cheap? Breaking points in dynamic markets. Journal of Mathematical Eco-
nomics 112 (2024), 102987. https://doi.org/10.1016/j.jmateco.2024.102987

[72] Silvio Micali and Vijay V. Vazirani. 1980. An𝑂 (
√
𝑉𝐸) Algorithm for Finding

Maximum Matching in General Graphs. In 21st Annual Symposium on Founda-
tions of Computer Science (FOCS), Syracuse, New York, USA, 13-15 October 1980.
IEEE Computer Society, 17–27. https://doi.org/10.1109/SFCS.1980.12

[73] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. 1987. Matching

is as easy as matrix inversion. In Proceedings of the Nineteenth Annual ACM
Symposium on Theory of Computing (New York, New York, USA) (STOC ’87).
Association for Computing Machinery, New York, NY, USA, 345–354. https:

//doi.org/10.1145/28395.383347

[74] Farid M. Naini, Jayakrishnan Unnikrishnan, Patrick Thiran, and Martin Vetterli.

2016. Where You Are Is Who You Are: User Identification by Matching Statistics.

Trans. Info. For. Sec. 11, 2 (Feb. 2016), 358–372. https://doi.org/10.1109/TIFS.

2015.2498131

[75] Lutz Oettershagen, HonglianWang, and Aristides Gionis. 2024. Finding Densest

Subgraphswith Edge-Color Constraints (WWW ’24). Association for Computing

Machinery, New York, NY, USA, 936–947. https://doi.org/10.1145/3589334.

3645647

[76] Erdős P. and Rényi A. 1959. On random graphs I. Publicationes Mathematicae 6,
290-297 (1959), 18.

[77] Yeonsu Park, Seongyun Ko, Sourav S. Bhowmick, Kyoungmin Kim, Kijae Hong,

andWook-Shin Han. 2020. G-CARE: A Framework for Performance Benchmark-

ing of Cardinality Estimation Techniques for Subgraph Matching. In Proceedings
of the 2020 ACM SIGMOD International Conference on Management of Data (Port-
land, OR, USA) (SIGMOD ’20). Association for Computing Machinery, New York,

NY, USA, 1099–1114. https://doi.org/10.1145/3318464.3389702

[78] Peng Peng, Shengyi Ji, Zhen Tian, Hongbo Jiang, Weiguo Zheng, and Xue-

cang Zhang. 2023. Locality Sensitive Hashing for Optimizing Subgraph Query

Processing in Parallel Computing Systems. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (Long Beach, CA,

USA) (KDD ’23). Association for Computing Machinery, New York, NY, USA,

1885–1896. https://doi.org/10.1145/3580305.3599419

[79] Chengzhi Piao,Weiguo Zheng, Yu Rong, and Hong Cheng. 2020. Maximizing the

reduction ability for near-maximum independent set computation. Proc. VLDB
Endow. 13, 12 (July 2020), 2466–2478. https://doi.org/10.14778/3407790.3407838

[80] James S. Plank. 2017. Edmonds’ General Matching Algorithm (The Blossom

Algorithm). https://web.eecs.utk.edu/~jplank/plank/classes/cs494/494/notes/

Edmonds/. Accessed: 2025-01-28.

[81] Ignacio Rios and Alfredo Torrico. 2024. Platform Design in Curated Dating

Markets. arXiv:2308.02584 [math.OC] https://arxiv.org/abs/2308.02584

[82] Alvin E. Roth, Tayfun Sönmez, and M. Utku Ünver. 2005. Pairwise kidney

exchange. Journal of Economic Theory 125, 2 (2005), 151–188. https://doi.org/

10.1016/j.jet.2005.04.004

[83] Benedek Rozemberczki and Rik Sarkar. 2021. Twitch Gamers: a Dataset for

Evaluating Proximity Preserving and Structural Role-based Node Embeddings.

arXiv:2101.03091 [cs.SI] https://arxiv.org/abs/2101.03091

[84] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M. Tamer

Özsu. 2017. The ubiquity of large graphs and surprising challenges of graph

processing. Proc. VLDB Endow. 11, 4 (Dec. 2017), 420–431. https://doi.org/10.

1145/3186728.3164139

[85] Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled Ammar,

Renzo Angles, Walid Aref, Marcelo Arenas, Maciej Besta, Peter A. Boncz, Khuza-

ima Daudjee, Emanuele Della Valle, Stefania Dumbrava, Olaf Hartig, Bernhard

Haslhofer, Tim Hegeman, Jan Hidders, Katja Hose, Adriana Iamnitchi, Vasiliki

Kalavri, Hugo Kapp, Wim Martens, M. Tamer Özsu, Eric Peukert, Stefan Plan-

tikow, Mohamed Ragab, Matei R. Ripeanu, Semih Salihoglu, Christian Schulz,

Petra Selmer, Juan F. Sequeda, Joshua Shinavier, Gábor Szárnyas, Riccardo Tom-

masini, Antonino Tumeo, Alexandru Uta, Ana Lucia Varbanescu, Hsiang-Yun

Wu, Nikolay Yakovets, Da Yan, and Eiko Yoneki. 2021. The future is big graphs:

a community view on graph processing systems. Commun. ACM 64, 9 (Aug.

2021), 62–71. https://doi.org/10.1145/3434642

[86] Gregory Schwing, Daniel Grosu, and Loren Schwiebert. 2024. Parallel Maximum

Cardinality Matching for General Graphs on GPUs. In 2024 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW). 880–889.

https://doi.org/10.1145/3505637
https://arxiv.org/abs/2303.15933
https://arxiv.org/abs/2303.15933
https://doi.org/10.1137/0202019
https://doi.org/10.1137/0202019
https://doi.org/10.1007/s00778-024-00883-8
https://doi.org/10.1016/0020-0190(86)90144-4
https://doi.org/10.1016/0020-0190(86)90144-4
https://doi.org/10.1137/1.9781611977912.141
https://doi.org/10.1137/1.9781611977912.141
https://doi.org/10.14778/3587136.3587144
https://doi.org/10.1093/oso/9780198501626.001.0001
https://doi.org/10.1093/oso/9780198501626.001.0001
https://arxiv.org/abs/1404.5874
https://arxiv.org/abs/1404.5874
https://doi.org/10.1007/s12532-009-0002-8
https://doi.org/10.1145/1232722.1232727
https://doi.org/10.1145/1232722.1232727
https://doi.org/10.1145/1772690.1772756
https://doi.org/10.1145/1081870.1081893
https://doi.org/10.1145/1081870.1081893
http://snap.stanford.edu/data
https://proceedings.neurips.cc/paper_files/paper/2012/file/7a614fd06c325499f1680b9896beedeb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/7a614fd06c325499f1680b9896beedeb-Paper.pdf
https://doi.org/10.14778/3603581.3603594
https://doi.org/10.1109/ICDE60146.2024.00159
https://doi.org/10.14778/2794367.2794376
https://doi.org/10.1109/ICDE55515.2023.00075
https://doi.org/10.1109/ICDE55515.2023.00075
https://doi.org/10.1145/2463676.2465321
https://doi.org/10.1198/tast.2011.08294
https://doi.org/10.1145/3694966
https://doi.org/10.1016/j.jmateco.2024.102987
https://doi.org/10.1109/SFCS.1980.12
https://doi.org/10.1145/28395.383347
https://doi.org/10.1145/28395.383347
https://doi.org/10.1109/TIFS.2015.2498131
https://doi.org/10.1109/TIFS.2015.2498131
https://doi.org/10.1145/3589334.3645647
https://doi.org/10.1145/3589334.3645647
https://doi.org/10.1145/3318464.3389702
https://doi.org/10.1145/3580305.3599419
https://doi.org/10.14778/3407790.3407838
https://web.eecs.utk.edu/~jplank/plank/classes/cs494/494/notes/Edmonds/
https://web.eecs.utk.edu/~jplank/plank/classes/cs494/494/notes/Edmonds/
https://arxiv.org/abs/2308.02584
https://arxiv.org/abs/2308.02584
https://doi.org/10.1016/j.jet.2005.04.004
https://doi.org/10.1016/j.jet.2005.04.004
https://arxiv.org/abs/2101.03091
https://arxiv.org/abs/2101.03091
https://doi.org/10.1145/3186728.3164139
https://doi.org/10.1145/3186728.3164139
https://doi.org/10.1145/3434642

https://doi.org/10.1109/IPDPSW63119.2024.00157

[87] Gregory Schwing, Daniel Grosu, and Loren Schwiebert. 2024. Shared-Memory

Parallel Edmonds Blossom Algorithm for Maximum Cardinality Matching

in General Graphs. In 2024 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW). 530–539. https://doi.org/10.1109/

IPDPSW63119.2024.00107

[88] Kiarash Shamsi, Friedhelm Victor, Murat Kantarcioglu, Yulia Gel, and Cuneyt G

Akcora. 2022. Chartalist: Labeled Graph Datasets for UTXO and Account-based

Blockchains. In Advances in Neural Information Processing Systems, Vol. 35.
Curran Associates, Inc., 34926–34939.

[89] Yingxia Shao, Lei Chen, and Bin Cui. 2014. Efficient cohesive subgraphs

detection in parallel. In Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data (Snowbird, Utah, USA) (SIGMOD ’14). As-
sociation for Computing Machinery, New York, NY, USA, 613–624. https:

//doi.org/10.1145/2588555.2593665

[90] Yingxia Shao, Bin Cui, Lei Chen, Lin Ma, Junjie Yao, and Ning Xu. 2014. Parallel

subgraph listing in a large-scale graph. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data (Snowbird, Utah, USA) (SIG-
MOD ’14). Association for Computing Machinery, New York, NY, USA, 625–636.

https://doi.org/10.1145/2588555.2588557

[91] Suraj Shetiya, Ian P. Swift, Abolfazl Asudeh, and Gautam Das. 2024. Shapley

Values for Explanation in Two-sided Matching Applications. In Proceedings
27th International Conference on Extending Database Technology, EDBT 2024,
Paestum, Italy, March 25 - March 28. OpenProceedings.org, 584–596. https:

//doi.org/10.48786/EDBT.2024.50

[92] Baruch Shieber and Shlomo Moran. 1986. Slowing sequential algorithms for

obtaining fast distributed and parallel algorithms: maximum matchings. In

Proceedings of the Fifth Annual ACM Symposium on Principles of Distributed
Computing (Calgary, Alberta, Canada) (PODC ’86). Association for Computing

Machinery, New York, NY, USA, 282–292. https://doi.org/10.1145/10590.10615

[93] Amy Shoemaker and Sagar Vare. 2016. Edmonds’ blossom algo-

rithm. https://stanford.edu/~rezab/classes/cme323/S16/projects_reports/

shoemaker_vare.pdf. Accessed: 2025-01-03.

[94] Lawrence V Snyder and Zuo-Jun Max Shen. 2019. The Traveling Salesman

Problem. In Fundamentals of Supply Chain Theory. John Wiley Sons, Ltd,

Chapter 10, 403–461. https://doi.org/10.1002/9781119584445.ch10

[95] Yixin Su, Rui Zhang, Sarah M. Erfani, and Junhao Gan. 2021. Neural Graph

Matching based Collaborative Filtering. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Development in Information Retrieval
(Virtual Event, Canada) (SIGIR ’21). Association for Computing Machinery, New

York, NY, USA, 849–858. https://doi.org/10.1145/3404835.3462833

[96] Amirmahdi Tafreshian and Neda Masoud. 2020. Using subsidies to stabilize

peer-to-peer ridesharing markets with role assignment. Transportation Research
Part C: Emerging Technologies 120 (2020), 102770. https://doi.org/10.1016/j.trc.

2020.102770

[97] Nguyen Thanh Tam, Matthias Weidlich, Bolong Zheng, Hongzhi Yin, Nguyen

Quoc Viet Hung, and Bela Stantic. 2019. From anomaly detection to rumour

detection using data streams of social platforms. Proc. VLDB Endow. 12, 9 (May

2019), 1016–1029. https://doi.org/10.14778/3329772.3329778

[98] Vijay V. Vazirani. 2013. A Simplification of the MV Matching Algorithm and its

Proof. arXiv:1210.4594 [cs.DS] https://arxiv.org/abs/1210.4594

[99] Vijay V. Vazirani. 2020. A Proof of the MV Matching Algorithm.

arXiv:2012.03582 [cs.DS] https://arxiv.org/abs/2012.03582

[100] Hao Wang, Liang Geng, Rubao Lee, Kaixi Hou, Yanfeng Zhang, and Xiaodong

Zhang. 2019. SEP-graph: finding shortest execution paths for graph processing

under a hybrid framework on GPU. In Proceedings of the 24th Symposium
on Principles and Practice of Parallel Programming (Washington, District of

Columbia) (PPoPP ’19). Association for Computing Machinery, New York, NY,

USA, 38–52. https://doi.org/10.1145/3293883.3295733

[101] Libin Wang and Raymond Chi-Wing Wong. 2024. PCSP: Efficiently Answering

Label-Constrained Shortest Path Queries in Road Networks. Proc. VLDB Endow.
17, 11 (July 2024), 3082–3094. https://doi.org/10.14778/3681954.3681985

[102] YongxinWang, Kris Kitani, and XinshuoWeng. 2021. Joint Object Detection and

Multi-Object Tracking with Graph Neural Networks. In 2021 IEEE International
Conference on Robotics and Automation (ICRA). 13708–13715. https://doi.org/

10.1109/ICRA48506.2021.9561110

[103] Yansheng Wang, Yongxin Tong, Cheng Long, Pan Xu, Ke Xu, and Weifeng Lv.

2019. Adaptive Dynamic Bipartite Graph Matching: A Reinforcement Learning

Approach. In 2019 IEEE 35th International Conference on Data Engineering (ICDE).
1478–1489. https://doi.org/10.1109/ICDE.2019.00133

[104] Yuandong Wang, Hongzhi Yin, Lian Wu, Tong Chen, and Chunyang Liu. 2023.

Secure Your Ride: Real-Time Matching Success Rate Prediction for Passenger-

Driver Pairs. IEEE Transactions on Knowledge and Data Engineering 35, 3 (2023),

3059–3071. https://doi.org/10.1109/TKDE.2021.3112739

[105] Frank Wanye, Vitaliy Gleyzer, and Wu-chun Feng. 2019. Fast Stochastic Block

Partitioning via Sampling. In 2019 IEEE High Performance Extreme Computing
Conference (HPEC). 1–7. https://doi.org/10.1109/HPEC.2019.8916542

[106] Manuel Widmoser, Daniel Kocher, and Nikolaus Augsten. 2024. Scalable Dis-

tributed Inverted List Indexes in Disaggregated Memory. Proc. ACM Manag.
Data 2, 3, Article 171 (May 2024), 27 pages. https://doi.org/10.1145/3654974

[107] Leonard Wörteler, Moritz Renftle, Theodoros Chondrogiannis, and Michael

Grossniklaus. 2022. Cardinality Estimation using Label Probability Propagation

for SubgraphMatching in Property Graph Databases. In International Conference
on Extending Database Technology. https://api.semanticscholar.org/CorpusID:

247802252

[108] Michael M. Wu and Michael C. Loui. 1990. An efficient distributed algorithm

for maximum matching in general graphs. Algorithmica 5, 1 (1990), 383–406.
https://doi.org/10.1007/BF01840395

[109] Yue Wu and Lin Zhong. 2023. Fusion Blossom: Fast MWPM Decoders for QEC

. In 2023 IEEE International Conference on Quantum Computing and Engineering
(QCE). IEEE Computer Society, Los Alamitos, CA, USA, 928–938. https://doi.

org/10.1109/QCE57702.2023.00107

[110] Yichen Xu, Chenhao Ma, Yixiang Fang, and Zhifeng Bao. 2024. Efficient and

effective algorithms for densest subgraph discovery andmaintenance. The VLDB
Journal 33, 5 (2024), 1427–1452. https://doi.org/10.1007/s00778-024-00855-y

[111] Jaewon Yang and Jure Leskovec. 2015. Defining and evaluating network com-

munities based on ground-truth. Knowledge and Information Systems 42, 1
(2015), 181–213. https://doi.org/10.1007/s10115-013-0693-z

[112] Hao Zhang, Jeffrey Xu Yu, Yikai Zhang, Kangfei Zhao, and Hong Cheng. 2020.

Distributed subgraph counting: a general approach. Proc. VLDB Endow. 13, 12
(July 2020), 2493–2507. https://doi.org/10.14778/3407790.3407840

[113] Kaiqi Zhao, Gao Cong, Jin-Yao Chin, and Rong Wen. 2019. Exploring market

competition over topics in spatio-temporal document collections. The VLDB
Journal 28, 1 (2019), 123–145. https://doi.org/10.1007/s00778-018-0522-9

[114] Yingli Zhou, Yixiang Fang, Chenhao Ma, Tianci Hou, and Xin Huang. 2024.

Efficient Maximal Motif-Clique Enumeration over Large Heterogeneous Infor-

mation Networks. Proc. VLDB Endow. 17, 11 (July 2024), 2946–2959. https:

//doi.org/10.14778/3681954.3681975

https://doi.org/10.1109/IPDPSW63119.2024.00157
https://doi.org/10.1109/IPDPSW63119.2024.00107
https://doi.org/10.1109/IPDPSW63119.2024.00107
https://doi.org/10.1145/2588555.2593665
https://doi.org/10.1145/2588555.2593665
https://doi.org/10.1145/2588555.2588557
https://doi.org/10.48786/EDBT.2024.50
https://doi.org/10.48786/EDBT.2024.50
https://doi.org/10.1145/10590.10615
https://stanford.edu/~rezab/classes/cme323/S16/projects_reports/shoemaker_vare.pdf
https://stanford.edu/~rezab/classes/cme323/S16/projects_reports/shoemaker_vare.pdf
https://doi.org/10.1002/9781119584445.ch10
https://doi.org/10.1145/3404835.3462833
https://doi.org/10.1016/j.trc.2020.102770
https://doi.org/10.1016/j.trc.2020.102770
https://doi.org/10.14778/3329772.3329778
https://arxiv.org/abs/1210.4594
https://arxiv.org/abs/1210.4594
https://arxiv.org/abs/2012.03582
https://arxiv.org/abs/2012.03582
https://doi.org/10.1145/3293883.3295733
https://doi.org/10.14778/3681954.3681985
https://doi.org/10.1109/ICRA48506.2021.9561110
https://doi.org/10.1109/ICRA48506.2021.9561110
https://doi.org/10.1109/ICDE.2019.00133
https://doi.org/10.1109/TKDE.2021.3112739
https://doi.org/10.1109/HPEC.2019.8916542
https://doi.org/10.1145/3654974
https://api.semanticscholar.org/CorpusID:247802252
https://api.semanticscholar.org/CorpusID:247802252
https://doi.org/10.1007/BF01840395
https://doi.org/10.1109/QCE57702.2023.00107
https://doi.org/10.1109/QCE57702.2023.00107
https://doi.org/10.1007/s00778-024-00855-y
https://doi.org/10.1007/s10115-013-0693-z
https://doi.org/10.14778/3407790.3407840
https://doi.org/10.1007/s00778-018-0522-9
https://doi.org/10.14778/3681954.3681975
https://doi.org/10.14778/3681954.3681975

	Abstract
	1 Introduction
	2 Background
	2.1 Matching and Augmenting Path
	2.2 Finding Augmenting Paths
	2.3 Blossom Algorithm

	3 Challenges and Insights
	3.1 Challenges in Parallel Processing
	3.2 Blossom Contraction
	3.3 Blossom Lifting

	4 Recursion-Free Blossom Algorithm
	4.1 Key Lemmas
	4.2 Sequential Recursion-Free Algorithm
	4.3 Correctness and Complexity

	5 Parallel Framework: X-Blossom
	5.1 Efficient Parallel Strategy
	5.2 Parallel Recursion-Free Algorithm
	5.3 Lock-Free Synchronization
	5.4 Discarding Alternating Tree

	6 Performance Evaluation
	6.1 Evaluation Platform Settings
	6.2 Overall Performance
	6.3 Random Graphs with Specific Density
	6.4 Random Graphs with Specific Degree
	6.5 Graphs with Gamma-Distributed Degrees
	6.6 Memory Usage
	6.7 Effectiveness of Path Table
	6.8 Scalability Evaluation

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

